Exemple #1
0
def to_esfilter(self, schema):
    output = OrOp("or", [
        AndOp("and", [self.when, BooleanOp("boolean", self.then)]),
        AndOp("and", [NotOp("not", self.when), BooleanOp("boolean", self.els_)])
    ]).partial_eval()

    return output.to_esfilter(schema)
Exemple #2
0
def to_sql(self, schema, not_null=False, boolean=False):
    not_expr = NotOp(BooleanOp(self.term)).partial_eval()
    if is_op(not_expr, Variable):
        return wrap([{
            "name": ".",
            "sql": {
                "b": "NOT " + sql_iso(not_expr.term.to_sql(schema)[0].sql.b)
            }
        }])
    else:
        return not_expr.to_sql(schema)
Exemple #3
0
def to_sql(self, schema, not_null=False, boolean=False):
    not_expr = NotOp("not", BooleanOp("boolean", self.term)).partial_eval()
    if isinstance(not_expr, NotOp):
        return wrap([{
            "name": ".",
            "sql": {
                "b": "NOT " + sql_iso(not_expr.term.to_sql(schema)[0].sql.b)
            }
        }])
    else:
        return not_expr.to_sql(schema)
Exemple #4
0
def to_painless(self, schema):
    value = self.term.to_painless(schema)
    if value.many:
        return BooleanOp("boolean", Painless(
            miss=value.miss,
            type=value.type,
            expr="(" + value.expr + ")[0]",
            frum=value.frum
        )).to_painless(schema)
    elif value.type == BOOLEAN:
        miss = value.miss
        value.miss = FALSE
        return WhenOp("when",  miss, **{"then": FALSE, "else": value}).partial_eval().to_painless(schema)
    else:
        return NotOp("not", value.miss).partial_eval().to_painless(schema)
def to_es14_script(self, schema, not_null=False, boolean=False, many=True):
    value = self.term.to_es14_script(schema)
    if value.many:
        return BooleanOp("boolean", EsScript(
            miss=value.miss,
            type=value.type,
            expr="(" + value.expr + ")[0]",
            frum=value.frum
        )).to_es14_script(schema)
    elif value.type == BOOLEAN:
        miss = value.miss
        value.miss = FALSE
        return WhenOp("when",  miss, **{"then": FALSE, "else": value}).partial_eval().to_es14_script(schema)
    else:
        return NotOp("not", value.miss).partial_eval().to_es14_script(schema)
    def _set_op(self, query, frum):
        # GET LIST OF COLUMNS
        base_name, primary_nested_path = tail_field(frum)
        vars_ = UNION([
            v.var for select in listwrap(query.select)
            for v in select.value.vars()
        ])
        schema = self.sf.tables[primary_nested_path].schema

        active_columns = {".": set()}
        for v in vars_:
            for c in schema.leaves(v):
                nest = c.nested_path[0]
                active_columns.setdefault(nest, set()).add(c)

        # ANY VARS MENTIONED WITH NO COLUMNS?
        for v in vars_:
            if not any(startswith_field(cname, v) for cname in schema.keys()):
                active_columns["."].add(
                    Column(name=v,
                           jx_type="null",
                           es_column=".",
                           es_index=".",
                           nested_path=["."]))

        # EVERY COLUMN, AND THE INDEX IT TAKES UP
        index_to_column = {}  # MAP FROM INDEX TO COLUMN (OR SELECT CLAUSE)
        index_to_uid = {}  # FROM NESTED PATH TO THE INDEX OF UID
        sql_selects = [
        ]  # EVERY SELECT CLAUSE (NOT TO BE USED ON ALL TABLES, OF COURSE)
        nest_to_alias = {
            nested_path: "__" + unichr(ord('a') + i) + "__"
            for i, (nested_path,
                    sub_table) in enumerate(self.sf.tables.items())
        }

        sorts = []
        if query.sort:
            for select in query.sort:
                col = select.value.to_sql(schema)[0]
                for t, sql in col.sql.items():
                    json_type = sql_type_to_json_type[t]
                    if json_type in STRUCT:
                        continue
                    column_number = len(sql_selects)
                    # SQL HAS ABS TABLE REFERENCE
                    column_alias = _make_column_name(column_number)
                    sql_selects.append(sql_alias(sql, column_alias))
                    if select.sort == -1:
                        sorts.append(column_alias + SQL_IS_NOT_NULL)
                        sorts.append(column_alias + " DESC")
                    else:
                        sorts.append(column_alias + SQL_IS_NULL)
                        sorts.append(column_alias)

        primary_doc_details = Data()
        # EVERY SELECT STATEMENT THAT WILL BE REQUIRED, NO MATTER THE DEPTH
        # WE WILL CREATE THEM ACCORDING TO THE DEPTH REQUIRED
        nested_path = []
        for step, sub_table in self.sf.tables.items():
            nested_path.insert(0, step)
            nested_doc_details = {
                "sub_table": sub_table,
                "children": [],
                "index_to_column": {},
                "nested_path": nested_path
            }

            # INSERT INTO TREE
            if not primary_doc_details:
                primary_doc_details = nested_doc_details
            else:

                def place(parent_doc_details):
                    if startswith_field(step,
                                        parent_doc_details['nested_path'][0]):
                        for c in parent_doc_details['children']:
                            if place(c):
                                return True
                        parent_doc_details['children'].append(
                            nested_doc_details)

                place(primary_doc_details)

            alias = nested_doc_details['alias'] = nest_to_alias[step]

            # WE ALWAYS ADD THE UID
            column_number = index_to_uid[step] = nested_doc_details[
                'id_coord'] = len(sql_selects)
            sql_select = join_column(alias, quoted_UID)
            sql_selects.append(
                sql_alias(sql_select, _make_column_name(column_number)))
            if step != ".":
                # ID AND ORDER FOR CHILD TABLES
                index_to_column[column_number] = ColumnMapping(
                    sql=sql_select,
                    type="number",
                    nested_path=nested_path,
                    column_alias=_make_column_name(column_number))
                column_number = len(sql_selects)
                sql_select = join_column(alias, quoted_ORDER)
                sql_selects.append(
                    sql_alias(sql_select, _make_column_name(column_number)))
                index_to_column[column_number] = ColumnMapping(
                    sql=sql_select,
                    type="number",
                    nested_path=nested_path,
                    column_alias=_make_column_name(column_number))

            # WE DO NOT NEED DATA FROM TABLES WE REQUEST NOTHING FROM
            if step not in active_columns:
                continue

            # ADD SQL SELECT COLUMNS FOR EACH jx SELECT CLAUSE
            si = 0
            for select in listwrap(query.select):
                try:
                    column_number = len(sql_selects)
                    select.pull = get_column(column_number)
                    db_columns = select.value.partial_eval().to_sql(schema)

                    for column in db_columns:
                        if isinstance(column.nested_path, list):
                            column.nested_path = column.nested_path[
                                0]  # IN THE EVENT THIS "column" IS MULTIVALUED
                        for t, unsorted_sql in column.sql.items():
                            json_type = sql_type_to_json_type[t]
                            if json_type in STRUCT:
                                continue
                            column_number = len(sql_selects)
                            column_alias = _make_column_name(column_number)
                            sql_selects.append(
                                sql_alias(unsorted_sql, column_alias))
                            if startswith_field(primary_nested_path,
                                                step) and isinstance(
                                                    select.value, LeavesOp):
                                # ONLY FLATTEN primary_nested_path AND PARENTS, NOT CHILDREN
                                index_to_column[
                                    column_number] = nested_doc_details[
                                        'index_to_column'][
                                            column_number] = ColumnMapping(
                                                push_name=literal_field(
                                                    get_property_name(
                                                        concat_field(
                                                            select.name,
                                                            column.name))),
                                                push_child=".",
                                                push_column_name=
                                                get_property_name(
                                                    concat_field(
                                                        select.name,
                                                        column.name)),
                                                push_column=si,
                                                pull=get_column(column_number),
                                                sql=unsorted_sql,
                                                type=json_type,
                                                column_alias=column_alias,
                                                nested_path=nested_path)
                                si += 1
                            else:
                                index_to_column[
                                    column_number] = nested_doc_details[
                                        'index_to_column'][
                                            column_number] = ColumnMapping(
                                                push_name=select.name,
                                                push_child=column.name,
                                                push_column_name=select.name,
                                                push_column=si,
                                                pull=get_column(column_number),
                                                sql=unsorted_sql,
                                                type=json_type,
                                                column_alias=column_alias,
                                                nested_path=nested_path)
                finally:
                    si += 1

        where_clause = BooleanOp("boolean", query.where).partial_eval().to_sql(
            schema, boolean=True)[0].sql.b
        unsorted_sql = self._make_sql_for_one_nest_in_set_op(
            ".", sql_selects, where_clause, active_columns, index_to_column)

        for n, _ in self.sf.tables.items():
            sorts.append(quote_column(COLUMN + text_type(index_to_uid[n])))

        ordered_sql = (SQL_SELECT + "*" + SQL_FROM + sql_iso(unsorted_sql) +
                       SQL_ORDERBY + sql_list(sorts) + SQL_LIMIT +
                       quote_value(query.limit))
        self.db.create_new_functions()  # creating new functions: regexp
        result = self.db.query(ordered_sql)

        def _accumulate_nested(rows, row, nested_doc_details, parent_doc_id,
                               parent_id_coord):
            """
            :param rows: REVERSED STACK OF ROWS (WITH push() AND pop())
            :param row: CURRENT ROW BEING EXTRACTED
            :param nested_doc_details: {
                    "nested_path": wrap_nested_path(nested_path),
                    "index_to_column": map from column number to column details
                    "children": all possible direct decedents' nested_doc_details
                 }
            :param parent_doc_id: the id of the parent doc (for detecting when to step out of loop)
            :param parent_id_coord: the column number for the parent id (so we ca extract from each row)
            :return: the nested property (usually an array)
            """
            previous_doc_id = None
            doc = Data()
            output = []
            id_coord = nested_doc_details['id_coord']

            while True:
                doc_id = row[id_coord]

                if doc_id == None or (parent_id_coord is not None and
                                      row[parent_id_coord] != parent_doc_id):
                    rows.append(
                        row
                    )  # UNDO PREVIOUS POP (RECORD IS NOT A NESTED RECORD OF parent_doc)
                    return output

                if doc_id != previous_doc_id:
                    previous_doc_id = doc_id
                    doc = Data()
                    curr_nested_path = nested_doc_details['nested_path'][0]
                    index_to_column = nested_doc_details[
                        'index_to_column'].items()
                    if index_to_column:
                        for i, c in index_to_column:
                            value = row[i]
                            if isinstance(query.select, list) or isinstance(
                                    query.select.value, LeavesOp):
                                # ASSIGN INNER PROPERTIES
                                relative_field = concat_field(
                                    c.push_name, c.push_child)
                            else:  # FACT IS EXPECTED TO BE A SINGLE VALUE, NOT AN OBJECT
                                relative_field = c.push_child

                            if relative_field == ".":
                                if value == '':
                                    doc = Null
                                else:
                                    doc = value
                            elif value != None and value != '':
                                doc[relative_field] = value

                for child_details in nested_doc_details['children']:
                    # EACH NESTED TABLE MUST BE ASSEMBLED INTO A LIST OF OBJECTS
                    child_id = row[child_details['id_coord']]
                    if child_id is not None:
                        nested_value = _accumulate_nested(
                            rows, row, child_details, doc_id, id_coord)
                        if nested_value:
                            push_name = child_details['nested_path'][0]
                            if isinstance(query.select, list) or isinstance(
                                    query.select.value, LeavesOp):
                                # ASSIGN INNER PROPERTIES
                                relative_field = relative_field(
                                    push_name, curr_nested_path)
                            else:  # FACT IS EXPECTED TO BE A SINGLE VALUE, NOT AN OBJECT
                                relative_field = "."

                            if relative_field == "." and doc is Null:
                                doc = nested_value
                            elif relative_field == ".":
                                doc = unwraplist(nested_value)
                            else:
                                doc[relative_field] = unwraplist(nested_value)

                output.append(doc)

                try:
                    row = rows.pop()
                except IndexError:
                    return output

        cols = tuple(
            [i for i in index_to_column.values() if i.push_name != None])
        rows = list(reversed(unwrap(result.data)))
        if rows:
            row = rows.pop()
            data = _accumulate_nested(rows, row, primary_doc_details, None,
                                      None)
        else:
            data = result.data

        if query.format == "cube":
            for f, _ in self.sf.tables.items():
                if frum.endswith(f) or (test_dots(cols)
                                        and isinstance(query.select, list)):
                    num_rows = len(result.data)
                    num_cols = MAX([c.push_column
                                    for c in cols]) + 1 if len(cols) else 0
                    map_index_to_name = {
                        c.push_column: c.push_column_name
                        for c in cols
                    }
                    temp_data = [[None] * num_rows for _ in range(num_cols)]
                    for rownum, d in enumerate(result.data):
                        for c in cols:
                            if c.push_child == ".":
                                temp_data[c.push_column][rownum] = c.pull(d)
                            else:
                                column = temp_data[c.push_column][rownum]
                                if column is None:
                                    column = temp_data[
                                        c.push_column][rownum] = {}
                                column[c.push_child] = c.pull(d)
                    output = Data(meta={"format": "cube"},
                                  data={
                                      n: temp_data[c]
                                      for c, n in map_index_to_name.items()
                                  },
                                  edges=[{
                                      "name": "rownum",
                                      "domain": {
                                          "type": "rownum",
                                          "min": 0,
                                          "max": num_rows,
                                          "interval": 1
                                      }
                                  }])
                    return output

            if isinstance(query.select, list) or isinstance(
                    query.select.value, LeavesOp):
                num_rows = len(data)
                temp_data = {
                    c.push_column_name: [None] * num_rows
                    for c in cols
                }
                for rownum, d in enumerate(data):
                    for c in cols:
                        temp_data[c.push_column_name][rownum] = d[c.push_name]
                return Data(meta={"format": "cube"},
                            data=temp_data,
                            edges=[{
                                "name": "rownum",
                                "domain": {
                                    "type": "rownum",
                                    "min": 0,
                                    "max": num_rows,
                                    "interval": 1
                                }
                            }])
            else:
                num_rows = len(data)
                map_index_to_name = {
                    c.push_column: c.push_column_name
                    for c in cols
                }
                temp_data = [data]

                return Data(meta={"format": "cube"},
                            data={
                                n: temp_data[c]
                                for c, n in map_index_to_name.items()
                            },
                            edges=[{
                                "name": "rownum",
                                "domain": {
                                    "type": "rownum",
                                    "min": 0,
                                    "max": num_rows,
                                    "interval": 1
                                }
                            }])

        elif query.format == "table":
            for f, _ in self.sf.tables.items():
                if frum.endswith(f):
                    num_column = MAX([c.push_column for c in cols]) + 1
                    header = [None] * num_column
                    for c in cols:
                        header[c.push_column] = c.push_column_name

                    output_data = []
                    for d in result.data:
                        row = [None] * num_column
                        for c in cols:
                            set_column(row, c.push_column, c.push_child,
                                       c.pull(d))
                        output_data.append(row)

                    return Data(meta={"format": "table"},
                                header=header,
                                data=output_data)
            if isinstance(query.select, list) or isinstance(
                    query.select.value, LeavesOp):
                column_names = [None] * (max(c.push_column for c in cols) + 1)
                for c in cols:
                    column_names[c.push_column] = c.push_column_name

                temp_data = []
                for rownum, d in enumerate(data):
                    row = [None] * len(column_names)
                    for c in cols:
                        row[c.push_column] = d[c.push_name]
                    temp_data.append(row)

                return Data(meta={"format": "table"},
                            header=column_names,
                            data=temp_data)
            else:
                column_names = listwrap(query.select).name
                return Data(meta={"format": "table"},
                            header=column_names,
                            data=[[d] for d in data])

        else:
            for f, _ in self.sf.tables.items():
                if frum.endswith(f) or (test_dots(cols)
                                        and isinstance(query.select, list)):
                    data = []
                    for d in result.data:
                        row = Data()
                        for c in cols:
                            if c.push_child == ".":
                                row[c.push_name] = c.pull(d)
                            elif c.num_push_columns:
                                tuple_value = row[c.push_name]
                                if not tuple_value:
                                    tuple_value = row[c.push_name] = [
                                        None
                                    ] * c.num_push_columns
                                tuple_value[c.push_child] = c.pull(d)
                            else:
                                row[c.push_name][c.push_child] = c.pull(d)

                        data.append(row)

                    return Data(meta={"format": "list"}, data=data)

            if isinstance(query.select, list) or isinstance(
                    query.select.value, LeavesOp):
                temp_data = []
                for rownum, d in enumerate(data):
                    row = {}
                    for c in cols:
                        row[c.push_column_name] = d[c.push_name]
                    temp_data.append(row)
                return Data(meta={"format": "list"}, data=temp_data)
            else:
                return Data(meta={"format": "list"}, data=data)
Exemple #7
0
 def exists(self):
     return BooleanOp(self)