def test_single_cond_multi_subjs(self):
        params = OrderedDict([('loc', 0), ('scale', 1)])
        subjs = 3
        size = 100

        # generate test data
        seed = 31337
        data, params_subjs = gen_rand_data(gen_func_df,
                                           params,
                                           size=size,
                                           subjs=subjs,
                                           seed=seed)

        # test subj present
        np.testing.assert_array_equal(np.unique(data['subj_idx']),
                                      list(range(subjs)))

        # test for correct length
        np.testing.assert_array_equal(len(data), subjs * size)

        # generate truth
        np.random.seed(seed)
        for i in range(subjs):
            new_params = _add_noise({'test': params})['test']
            print("check", new_params)
            truth = gen_func_df(size=size, **new_params)
            np.testing.assert_array_equal(data[data['subj_idx'] == i]['data'],
                                          truth['data'])
            self.assertEqual(params_subjs[i], new_params)
    def test_multiple_cond_no_subj(self):
        size = 100
        params = OrderedDict([('cond1', {
            'loc': 0,
            'scale': 1
        }), ('cond2', {
            'loc': 100,
            'scale': 10
        })])

        seed = 31337
        data, subj_params = gen_rand_data(gen_func_df,
                                          params,
                                          size=size,
                                          seed=seed)

        # test whether conditions are present
        np.testing.assert_array_equal(np.unique(data['condition'].values),
                                      ['cond1', 'cond2'])
        self.assertEqual(list(subj_params.keys()), ['cond1', 'cond2'])

        # test for correct length
        np.testing.assert_array_equal(len(data), 2 * size)

        # generate truth
        np.random.seed(31337)
        truth = gen_func_df(size=100, **params['cond1'])
        np.testing.assert_array_equal(
            data[data['condition'] == 'cond1']['data'], truth['data'])

        truth = gen_func_df(size=100, **params['cond2'])
        np.testing.assert_array_equal(
            data[data['condition'] == 'cond2']['data'], truth['data'])
Exemple #3
0
 def test_single_cond_no_subj(self):
     params = {'loc': 0, 'scale': 1}
     seed = 31337
     data, params_return = gen_rand_data(gen_func_df, params, size=100, seed=seed)
     np.random.seed(seed)
     truth = gen_func_df(size=100, **params)
     np.testing.assert_array_equal(data['data'], truth['data'])
     self.assertEqual(params, params_return)
Exemple #4
0
    def test_single_cond_no_subj(self):
        params = {"loc": 0, "scale": 1}
        np.random.seed(31337)
        data, params_return = gen_rand_data(normal_like, params, samples=100)
        np.random.seed(31337)
        truth = np.float64(normal_like.rv.random(size=100, **params))

        np.testing.assert_array_equal(data["data"], truth)
        self.assertEqual(params, params_return)
Exemple #5
0
    def test_column_name(self):
        params = OrderedDict([('loc', 0), ('scale', 1)])
        subjs = 100
        size = 100

        # generate test data
        np.random.seed(31337)
        data, params_subjs = gen_rand_data(gen_func_df, params, size=size, subjs=subjs, exclude_params=('scale',))

        self.assertIn('data', data.columns)
Exemple #6
0
    def test_column_name(self):
        params = OrderedDict([('loc', 0), ('scale', 1)])
        subjs = 100
        samples = 100

        # generate test data
        np.random.seed(31337)
        data, params_subjs = gen_rand_data(normal_like, params, samples=samples, subjs=subjs, exclude_params=('scale',), column_name='test')

        self.assertIn('test', data.dtype.names)
 def test_single_cond_no_subj(self):
     params = {'loc': 0, 'scale': 1}
     seed = 31337
     data, params_return = gen_rand_data(gen_func_df,
                                         params,
                                         size=100,
                                         seed=seed)
     np.random.seed(seed)
     truth = gen_func_df(size=100, **params)
     np.testing.assert_array_equal(data['data'], truth['data'])
     self.assertEqual(params, params_return)
Exemple #8
0
    def test_column_name(self):
        params = OrderedDict([("loc", 0), ("scale", 1)])
        subjs = 100
        samples = 100

        # generate test data
        np.random.seed(31337)
        data, params_subjs = gen_rand_data(
            normal_like, params, samples=samples, subjs=subjs, exclude_params=("scale",), column_name="test"
        )

        self.assertIn("test", data.dtype.names)
    def test_column_name(self):
        params = OrderedDict([('loc', 0), ('scale', 1)])
        subjs = 100
        size = 100

        # generate test data
        np.random.seed(31337)
        data, params_subjs = gen_rand_data(gen_func_df,
                                           params,
                                           size=size,
                                           subjs=subjs,
                                           exclude_params=('scale', ))

        self.assertIn('data', data.columns)
Exemple #10
0
    def test_mulltiple_cond_no_subj(self):
        samples = 100
        params = OrderedDict([("cond1", {"loc": 0, "scale": 1}), ("cond2", {"loc": 100, "scale": 10})])

        np.random.seed(31337)
        data, subj_params = gen_rand_data(normal_like, params, samples=samples)

        # test whether conditions are present
        np.testing.assert_array_equal(np.unique(data["condition"]), ["cond1", "cond2"])
        self.assertEqual(subj_params.keys(), ["cond1", "cond2"])

        # test for correct length
        np.testing.assert_array_equal(len(data), 2 * samples)

        # generate truth
        np.random.seed(31337)
        truth = np.float64(normal_like.rv.random(size=100, **params["cond1"]))
        np.testing.assert_array_equal(data[data["condition"] == "cond1"]["data"], truth)

        truth = np.float64(normal_like.rv.random(size=100, **params["cond2"]))
        np.testing.assert_array_equal(data[data["condition"] == "cond2"]["data"], truth)
Exemple #11
0
    def test_mulltiple_cond_no_subj(self):
        size = 100
        params = OrderedDict([('cond1', {'loc': 0, 'scale': 1}), ('cond2', {'loc': 100, 'scale': 10})])

        seed = 31337
        data, subj_params = gen_rand_data(gen_func_df, params, size=size, seed=seed)

        # test whether conditions are present
        np.testing.assert_array_equal(np.unique(data['condition']).values, ['cond1', 'cond2'])
        self.assertEqual(subj_params.keys(), ['cond1', 'cond2'])

        # test for correct length
        np.testing.assert_array_equal(len(data), 2*size)

        # generate truth
        np.random.seed(31337)
        truth = gen_func_df(size=100, **params['cond1'])
        np.testing.assert_array_equal(data[data['condition'] == 'cond1']['data'], truth['data'])

        truth = gen_func_df(size=100, **params['cond2'])
        np.testing.assert_array_equal(data[data['condition'] == 'cond2']['data'], truth['data'])
Exemple #12
0
    def test_mulltiple_cond_no_subj(self):
        samples = 100
        params = OrderedDict([('cond1', {'loc': 0, 'scale': 1}), ('cond2', {'loc': 100, 'scale': 10})])

        np.random.seed(31337)
        data, subj_params = gen_rand_data(normal_like, params, samples=samples)

        # test whether conditions are present
        np.testing.assert_array_equal(np.unique(data['condition']), ['cond1', 'cond2'])
        self.assertEqual(subj_params.keys(), ['cond1', 'cond2'])

        # test for correct length
        np.testing.assert_array_equal(len(data), 2*samples)

        # generate truth
        np.random.seed(31337)
        truth = np.float64(normal_like.rv.random(size=100, **params['cond1']))
        np.testing.assert_array_equal(data[data['condition'] == 'cond1']['data'], truth)

        truth = np.float64(normal_like.rv.random(size=100, **params['cond2']))
        np.testing.assert_array_equal(data[data['condition'] == 'cond2']['data'], truth)
Exemple #13
0
    def test_single_cond_multi_subjs_exclude(self):
        params = OrderedDict([("loc", 0), ("scale", 1)])
        subjs = 100
        samples = 100

        # generate test data
        np.random.seed(31337)
        data, params_subjs = gen_rand_data(normal_like, params, samples=samples, subjs=subjs, exclude_params=("scale",))

        # test subj present
        np.testing.assert_array_equal(np.unique(data["subj_idx"]), range(subjs))

        # test for correct length
        np.testing.assert_array_equal(len(data), subjs * samples)

        # generate truth
        np.random.seed(31337)
        for i in range(subjs):
            new_params = _add_noise(params, exclude_params=("scale",))
            truth = np.float64(normal_like.rv.random(size=samples, **new_params))
            np.testing.assert_array_equal(data[data["subj_idx"] == i]["data"], truth)
            self.assertEqual(params_subjs[i], new_params)
Exemple #14
0
    def test_single_cond_multi_subjs_exclude(self):
        params = OrderedDict([('loc', 0), ('scale', 1)])
        subjs = 3
        size = 100

        # generate test data
        seed = 31337
        data, params_subjs = gen_rand_data(gen_func_df, params, size=size, subjs=subjs,
                                           exclude_params=('scale',), seed=seed)

        # test subj present
        np.testing.assert_array_equal(np.unique(data['subj_idx']), range(subjs))

        # test for correct length
        np.testing.assert_array_equal(len(data), subjs*size)

        # generate truth
        np.random.seed(seed)
        for i in range(subjs):
            new_params = _add_noise({'test': params}, exclude_params=('scale',))['test']
            truth = gen_func_df(size=size, **new_params)
            np.testing.assert_array_equal(data[data['subj_idx'] == i]['data'], truth['data'])
            self.assertEqual(params_subjs[i], new_params)