Exemple #1
0
    def setUp(self):
        _data = [-2.1, 0.2, 1.9, 3.8, 6.1]
        self._means = np.array([3.654, 7.789])
        self._vars = np.array([2.467, 1.543])
        self._cov_mat_uncor = np.array([[self._vars[0], 0.0], [0.0, self._vars[1]]])
        self._cov_mat_uncor_inv = np.linalg.inv(self._cov_mat_uncor)
        self._cov_mat_cor = np.array([[self._vars[0], 0.1], [0.1, self._vars[1]]])
        self._cov_mat_cor_inv = np.linalg.inv(self._cov_mat_cor)
        self._cov_mat_simple_a_inv = np.array([[1.0 / self._vars[0], 0.0], [0.0, 0.0]])
        self._cov_mat_simple_b_inv = np.array([[0.0, 0.0], [0.0, 1.0 / self._vars[1]]])

        self._data_container = IndexedContainer(data=_data)
        self._data_container.add_error(err_val=1.0)

        _a_test = np.linspace(start=0,  stop=4, num=9, endpoint=True)
        _b_test = np.linspace(start=-4, stop=0, num=9, endpoint=True)
        self._test_par_values = np.zeros((4, 2, 9))
        self._test_par_values[0, 0] = _a_test
        self._test_par_values[1, 1] = _b_test
        self._test_par_values[2, 0] = _a_test
        self._test_par_values[2, 1] = _b_test
        self._test_par_values[3, 0] = _a_test
        self._test_par_values[3, 1] = -_b_test
        self._test_par_res = self._test_par_values - self._means.reshape((1, 2, 1))
        self._test_par_res = np.transpose(self._test_par_res, axes=(0, 2, 1))

        self._fit_no_constraints = IndexedFit(self._data_container, model_function=self._model)
        self._fit_no_constraints.do_fit()
        _cost_function = self._fit_no_constraints._fitter._fcn_wrapper
        self._profile_no_constraints = np.zeros((4, 9))
        for _i in range(4):
            for _j in range(9):
                self._profile_no_constraints[_i, _j] = _cost_function(
                    self._test_par_values[_i, 0, _j],
                    self._test_par_values[_i, 1, _j])
Exemple #2
0
    def setUp(self):
        self._ref_data = [3.3, 5.5, 2.2, 8.5, 10.2]
        self.idx_cont = IndexedContainer(data=self._ref_data)

        self._ref_err_abs_singlevalue = 1.2
        self._ref_err_abs_valuearray = [1.2, 1.1, 1.2, 1.2, 1.1]

        self._ref_err_corr_coeff = 0.23

        self.idx_cont.add_error(self._ref_err_abs_valuearray,
                                name='MyError',
                                correlation=self._ref_err_corr_coeff,
                                relative=False)

        self._ref_cov_mat = cov_mat_from_float_list(
            self._ref_err_abs_valuearray,
            correlation=self._ref_err_corr_coeff).mat
Exemple #3
0
class TestDatastoreIndexed(unittest.TestCase):
    def setUp(self):
        self._ref_data = [3.3, 5.5, 2.2, 8.5, 10.2]
        self.idx_cont = IndexedContainer(data=self._ref_data)

        self._ref_err_abs_singlevalue = 1.2
        self._ref_err_abs_valuearray = [1.2, 1.1, 1.2, 1.2, 1.1]

        self._ref_err_corr_coeff = 0.23

        self.idx_cont.add_error(self._ref_err_abs_valuearray,
                                name='MyError',
                                correlation=self._ref_err_corr_coeff,
                                relative=False)

        self._ref_cov_mat = cov_mat_from_float_list(
            self._ref_err_abs_valuearray,
            correlation=self._ref_err_corr_coeff).mat

    def test_get_matching_error_all_empty_dict(self):
        _errs = self.idx_cont.get_matching_errors(matching_criteria=dict())
        self.assertEqual(len(_errs), 1)
        self.assertIs(self.idx_cont._error_dicts['MyError']['err'],
                      _errs['MyError'])

    def test_get_matching_error_all_None(self):
        _errs = self.idx_cont.get_matching_errors(matching_criteria=None)
        self.assertEqual(len(_errs), 1)
        self.assertIs(self.idx_cont._error_dicts['MyError']['err'],
                      _errs['MyError'])

    def test_get_matching_error_name(self):
        _errs = self.idx_cont.get_matching_errors(matching_criteria=dict(
            name='MyError'))
        self.assertEqual(len(_errs), 1)
        self.assertIs(self.idx_cont._error_dicts['MyError']['err'],
                      _errs['MyError'])

    def test_get_matching_error_type_simple(self):
        _errs = self.idx_cont.get_matching_errors(matching_criteria=dict(
            type='simple'))
        self.assertEqual(len(_errs), 1)
        self.assertIs(self.idx_cont._error_dicts['MyError']['err'],
                      _errs['MyError'])

    def test_get_matching_error_type_matrix(self):
        _errs = self.idx_cont.get_matching_errors(matching_criteria=dict(
            type='matrix'))
        self.assertEqual(len(_errs), 0)

    def test_get_matching_error_uncorrelated(self):
        _errs = self.idx_cont.get_matching_errors(matching_criteria=dict(
            correlated=False))
        self.assertEqual(len(_errs), 0)

    def test_get_matching_error_correlated(self):
        _errs = self.idx_cont.get_matching_errors(matching_criteria=dict(
            correlated=True))
        self.assertEqual(len(_errs), 1)
        self.assertIs(self.idx_cont._error_dicts['MyError']['err'],
                      _errs['MyError'])

    def test_compare_error_reference(self):
        for _err_dict in self.idx_cont._error_dicts.values():
            _err_ref_vals = _err_dict['err'].reference
            self.assertTrue(np.all(_err_ref_vals == self._ref_data))

    def test_compare_ref_data(self):
        self.assertTrue(np.all(self.idx_cont.data == self._ref_data))

    def test_compare_ref_err(self):
        self.assertTrue(
            np.allclose(self.idx_cont.err,
                        self._ref_err_abs_valuearray,
                        atol=1e-10))

    def test_compare_ref_total_cov_mat(self):
        _err = self.idx_cont.get_total_error()
        _mat = _err.cov_mat
        self.assertTrue(np.allclose(_mat, self._ref_cov_mat, atol=1e-5))

    def test_compare_ref_total_err_for_add_err_twice(self):
        self.idx_cont.add_error(self._ref_err_abs_valuearray,
                                name='MyNewError',
                                correlation=self._ref_err_corr_coeff,
                                relative=False)
        _err = self.idx_cont.get_total_error()
        _mat = _err.cov_mat
        self.assertTrue(
            np.allclose(_mat, self._ref_cov_mat + self._ref_cov_mat,
                        atol=1e-5))

    def test_compare_ref_total_err_for_add_disable_new_err(self):
        self.idx_cont.add_error(self._ref_err_abs_valuearray,
                                name='MyNewError',
                                correlation=self._ref_err_corr_coeff,
                                relative=False)
        self.idx_cont.disable_error("MyNewError")
        _err = self.idx_cont.get_total_error()
        _mat = _err.cov_mat

        self.assertTrue(np.allclose(_mat, self._ref_cov_mat, atol=1e-5))

    def test_compare_ref_total_err_for_add_disable_reenable_new_err(self):
        self.idx_cont.add_error(self._ref_err_abs_valuearray,
                                name='MyNewError',
                                correlation=self._ref_err_corr_coeff,
                                relative=False)
        self.idx_cont.disable_error("MyNewError")
        _err = self.idx_cont.get_total_error()
        self.idx_cont.enable_error("MyNewError")
        _err = self.idx_cont.get_total_error()
        _mat = _err.cov_mat

        self.assertTrue(
            np.allclose(_mat, self._ref_cov_mat + self._ref_cov_mat,
                        atol=1e-5))

    def test_raise_add_same_error_name_twice(self):
        self.idx_cont.add_error(0.1,
                                name="MyNewError",
                                correlation=0,
                                relative=False)
        with self.assertRaises(DataContainerException):
            self.idx_cont.add_error(0.1,
                                    name="MyNewError",
                                    correlation=0,
                                    relative=False)

    def test_raise_get_inexistent_error(self):
        with self.assertRaises(DataContainerException):
            self.idx_cont.get_error("MyInexistentError")
Exemple #4
0
class TestParameterConstraintInIndexedFit(unittest.TestCase):

    def _expected_profile_diff(self, res, cov_mat_inv):
        return res.dot(cov_mat_inv).dot(res)

    def _test_consistency(self, constrained_fit, par_cov_mat_inv):
        constrained_fit.do_fit()
        _cost_function = constrained_fit._fitter._fcn_wrapper
        for _i in range(4):
            for _j in range(9):
                _profile_constrained = _cost_function(self._test_par_values[_i, 0, _j], self._test_par_values[_i, 1, _j])
                _diff = _profile_constrained - self._profile_no_constraints[_i, _j]
                _expected_profile_diff = self._expected_profile_diff(self._test_par_res[_i, _j], par_cov_mat_inv)
                self.assertTrue(np.abs(_diff - _expected_profile_diff) < 1e-12)

    @staticmethod
    def _model(a, b):
        return a * np.arange(5) + b

    def setUp(self):
        _data = [-2.1, 0.2, 1.9, 3.8, 6.1]
        self._means = np.array([3.654, 7.789])
        self._vars = np.array([2.467, 1.543])
        self._cov_mat_uncor = np.array([[self._vars[0], 0.0], [0.0, self._vars[1]]])
        self._cov_mat_uncor_inv = np.linalg.inv(self._cov_mat_uncor)
        self._cov_mat_cor = np.array([[self._vars[0], 0.1], [0.1, self._vars[1]]])
        self._cov_mat_cor_inv = np.linalg.inv(self._cov_mat_cor)
        self._cov_mat_simple_a_inv = np.array([[1.0 / self._vars[0], 0.0], [0.0, 0.0]])
        self._cov_mat_simple_b_inv = np.array([[0.0, 0.0], [0.0, 1.0 / self._vars[1]]])

        self._data_container = IndexedContainer(data=_data)
        self._data_container.add_error(err_val=1.0)

        _a_test = np.linspace(start=0,  stop=4, num=9, endpoint=True)
        _b_test = np.linspace(start=-4, stop=0, num=9, endpoint=True)
        self._test_par_values = np.zeros((4, 2, 9))
        self._test_par_values[0, 0] = _a_test
        self._test_par_values[1, 1] = _b_test
        self._test_par_values[2, 0] = _a_test
        self._test_par_values[2, 1] = _b_test
        self._test_par_values[3, 0] = _a_test
        self._test_par_values[3, 1] = -_b_test
        self._test_par_res = self._test_par_values - self._means.reshape((1, 2, 1))
        self._test_par_res = np.transpose(self._test_par_res, axes=(0, 2, 1))

        self._fit_no_constraints = IndexedFit(self._data_container, model_function=self._model)
        self._fit_no_constraints.do_fit()
        _cost_function = self._fit_no_constraints._fitter._fcn_wrapper
        self._profile_no_constraints = np.zeros((4, 9))
        for _i in range(4):
            for _j in range(9):
                self._profile_no_constraints[_i, _j] = _cost_function(
                    self._test_par_values[_i, 0, _j],
                    self._test_par_values[_i, 1, _j])

    def test_bad_input_exception(self):
        _fit_with_constraint = IndexedFit(self._data_container, model_function=self._model)
        with self.assertRaises(IndexedFitException):
            _fit_with_constraint.add_parameter_constraint('c', 1.0, 1.0)
        with self.assertRaises(IndexedFitException):
            _fit_with_constraint.add_matrix_parameter_constraint(['a', 'c'], [1.0, 2.0], [[0.2, 0.0], [0.0, 0.1]])
        with self.assertRaises(IndexedFitException):
            _fit_with_constraint.add_matrix_parameter_constraint(['a'], [1.0, 2.0], [[0.2, 0.0], [0.0, 0.1]])

    def test_fit_profile_cov_mat_uncorrelated(self):
        _fit_with_constraint = IndexedFit(self._data_container, model_function=self._model)
        _fit_with_constraint.add_matrix_parameter_constraint(['a', 'b'], self._means, self._cov_mat_uncor)
        self._test_consistency(_fit_with_constraint, self._cov_mat_uncor_inv)
        _fit_with_constraint_alt = IndexedFit(self._data_container, model_function=self._model)
        _fit_with_constraint_alt.add_parameter_constraint('a', self._means[0], np.sqrt(self._vars[0]))
        _fit_with_constraint_alt.add_parameter_constraint('b', self._means[1], np.sqrt(self._vars[1]))
        self._test_consistency(_fit_with_constraint_alt, self._cov_mat_uncor_inv)

    def test_fit_profile_cov_mat_correlated(self):
        _fit_with_constraint = IndexedFit(self._data_container, model_function=self._model)
        _fit_with_constraint.add_matrix_parameter_constraint(['a', 'b'], self._means, self._cov_mat_cor)
        self._test_consistency(_fit_with_constraint, self._cov_mat_cor_inv)

    def test_fit_profile_simple_a(self):
        _fit_with_constraint = IndexedFit(self._data_container, model_function=self._model)
        _fit_with_constraint.add_parameter_constraint('a', self._means[0], np.sqrt(self._vars[0]))
        self._test_consistency(_fit_with_constraint, self._cov_mat_simple_a_inv)

    def test_fit_profile_simple_b(self):
        _fit_with_constraint = IndexedFit(self._data_container, model_function=self._model)
        _fit_with_constraint.add_parameter_constraint('b', self._means[1], np.sqrt(self._vars[1]))
        self._test_consistency(_fit_with_constraint, self._cov_mat_simple_b_inv)
Exemple #5
0
    def setUp(self):
        _data = [4, 5, 6, 2, 4, 5., 3.01e-5, 4.4e+45]
        _ndat = len(_data)
        self._container = IndexedContainer(data=_data)

        self._container.add_error(err_val=0.1,
                                  name="SUA",
                                  correlation=0.0,
                                  relative=False)
        self._container.add_error(err_val=0.1,
                                  name="SUR",
                                  correlation=0.0,
                                  relative=True)
        self._container.add_error(err_val=0.1,
                                  name="SCA",
                                  correlation=1.0,
                                  relative=False)
        self._container.add_matrix_error(err_matrix=np.eye(_ndat) * 0.1,
                                         name="MCov",
                                         relative=False,
                                         matrix_type='covariance')
        self._container.add_matrix_error(err_matrix=np.eye(_ndat),
                                         name="MCor",
                                         relative=False,
                                         matrix_type='correlation',
                                         err_val=0.1)

        # # xy
        # self._container.add_simple_error(axis='x', err_val=0.1, correlation=0.0, relative=False)
        # self._container.add_simple_error(axis='y', err_val=0.2, correlation=0.0, relative=False)
        # self._container.add_matrix_error(axis='y', err_matrix=np.eye(8) * 0.1, relative=False, matrix_type='covariance')

        # # hist
        # self._container.add_simple_error(err_val=2, correlation=0.5, relative=False)

        self._roundtrip_stringstream = IOStreamHandle(StringIO())
        self._testfile_stringstream = IOStreamHandle(
            StringIO(TEST_DATASET_INDEXED))

        self._roundtrip_streamreader = DataContainerYamlReader(
            self._roundtrip_stringstream)
        self._roundtrip_streamwriter = DataContainerYamlWriter(
            self._container, self._roundtrip_stringstream)
        self._testfile_streamreader = DataContainerYamlReader(
            self._testfile_stringstream)

        self._ref_testfile_data = [80.429, 80.339]
        self._ref_testfile_err = [0.89442719, 0.89442719]
        self._ref_testfile_cov_mat = np.array([[0.8, 0.3], [0.3, 0.8]])
        self._ref_testfile_error_names = {
            'ErrorOne', 'ErrorTwo', 'ErrorThree', 'ErrorFour'
        }

        self._testfile_stringstream_missing_keyword = IOStreamHandle(
            StringIO(TEST_DATASET_INDEXED_MISSING_KEYWORD))
        self._testfile_stringstream_extra_keyword = IOStreamHandle(
            StringIO(TEST_DATASET_INDEXED_EXTRA_KEYWORD))
        self._testfile_streamreader_missing_keyword = DataContainerYamlReader(
            self._testfile_stringstream_missing_keyword)
        self._testfile_streamreader_extra_keyword = DataContainerYamlReader(
            self._testfile_stringstream_extra_keyword)
Exemple #6
0
class TestIndexedContainerYamlRepresentation(unittest.TestCase):
    def setUp(self):
        _data = [4, 5, 6, 2, 4, 5., 3.01e-5, 4.4e+45]
        _ndat = len(_data)
        self._container = IndexedContainer(data=_data)

        self._container.add_error(err_val=0.1,
                                  name="SUA",
                                  correlation=0.0,
                                  relative=False)
        self._container.add_error(err_val=0.1,
                                  name="SUR",
                                  correlation=0.0,
                                  relative=True)
        self._container.add_error(err_val=0.1,
                                  name="SCA",
                                  correlation=1.0,
                                  relative=False)
        self._container.add_matrix_error(err_matrix=np.eye(_ndat) * 0.1,
                                         name="MCov",
                                         relative=False,
                                         matrix_type='covariance')
        self._container.add_matrix_error(err_matrix=np.eye(_ndat),
                                         name="MCor",
                                         relative=False,
                                         matrix_type='correlation',
                                         err_val=0.1)

        # # xy
        # self._container.add_simple_error(axis='x', err_val=0.1, correlation=0.0, relative=False)
        # self._container.add_simple_error(axis='y', err_val=0.2, correlation=0.0, relative=False)
        # self._container.add_matrix_error(axis='y', err_matrix=np.eye(8) * 0.1, relative=False, matrix_type='covariance')

        # # hist
        # self._container.add_simple_error(err_val=2, correlation=0.5, relative=False)

        self._roundtrip_stringstream = IOStreamHandle(StringIO())
        self._testfile_stringstream = IOStreamHandle(
            StringIO(TEST_DATASET_INDEXED))

        self._roundtrip_streamreader = DataContainerYamlReader(
            self._roundtrip_stringstream)
        self._roundtrip_streamwriter = DataContainerYamlWriter(
            self._container, self._roundtrip_stringstream)
        self._testfile_streamreader = DataContainerYamlReader(
            self._testfile_stringstream)

        self._ref_testfile_data = [80.429, 80.339]
        self._ref_testfile_err = [0.89442719, 0.89442719]
        self._ref_testfile_cov_mat = np.array([[0.8, 0.3], [0.3, 0.8]])
        self._ref_testfile_error_names = {
            'ErrorOne', 'ErrorTwo', 'ErrorThree', 'ErrorFour'
        }

        self._testfile_stringstream_missing_keyword = IOStreamHandle(
            StringIO(TEST_DATASET_INDEXED_MISSING_KEYWORD))
        self._testfile_stringstream_extra_keyword = IOStreamHandle(
            StringIO(TEST_DATASET_INDEXED_EXTRA_KEYWORD))
        self._testfile_streamreader_missing_keyword = DataContainerYamlReader(
            self._testfile_stringstream_missing_keyword)
        self._testfile_streamreader_extra_keyword = DataContainerYamlReader(
            self._testfile_stringstream_extra_keyword)

    def test_write_to_roundtrip_stringstream(self):
        self._roundtrip_streamwriter.write()

    def test_read_from_testfile_stream(self):
        _read_container = self._testfile_streamreader.read()
        self.assertTrue(isinstance(_read_container, IndexedContainer))
        self.assertTrue(
            np.allclose(_read_container.data, self._ref_testfile_data))
        self.assertTrue(
            np.allclose(_read_container.err, self._ref_testfile_err))
        self.assertTrue(
            np.allclose(
                _read_container.cov_mat,
                self._ref_testfile_cov_mat,
            ))

        # check that the error names are the same
        self.assertEqual(set(_read_container._error_dicts.keys()),
                         self._ref_testfile_error_names)

    def test_read_from_testfile_stream_missing_keyword(self):
        with self.assertRaises(YamlReaderException):
            self._testfile_streamreader_missing_keyword.read()

    def test_read_from_testfile_stream_extra_keyword(self):
        with self.assertRaises(YamlReaderException):
            self._testfile_streamreader_extra_keyword.read()

    def test_round_trip_with_stringstream(self):
        self._roundtrip_streamwriter.write()
        self._roundtrip_stringstream.seek(0)  # return to beginning
        _read_container = self._roundtrip_streamreader.read()
        self.assertTrue(isinstance(_read_container, IndexedContainer))

        # compare data members
        self.assertTrue(np.allclose(self._container.data,
                                    _read_container.data))

        # compare (total) errors and cov mats
        # TODO: compare individual error components -> nontrivial because error ids change...
        self.assertTrue(np.allclose(self._container.err, _read_container.err))

        self.assertTrue(
            np.allclose(self._container.cov_mat, _read_container.cov_mat))

        # check that the error names are the same
        self.assertEqual(set(self._container._error_dicts.keys()),
                         set(_read_container._error_dicts.keys()))