8.018943e-01, 1.839664e+00, 1.941974e+00, 1.276013e+00, 2.839654e+00, 3.488302e+00, 3.775855e+00, 4.555187e+00, 4.477186e+00, 5.376026e+00 ] xerr = 3.000000e-01 y = [ 2.650644e-01, 1.472682e-01, 8.077234e-02, 1.850181e-01, 5.326301e-02, 1.984233e-02, 1.866309e-02, 1.230001e-02, 9.694612e-03, 2.412357e-03 ] yerr = [ 1.060258e-01, 5.890727e-02, 3.230893e-02, 7.400725e-02, 2.130520e-02, 7.936930e-03, 7.465238e-03, 4.920005e-03, 3.877845e-03, 9.649427e-04 ] # create a fit object from the data arrays fit = Fit(data=[x, y], model_function=exponential) fit.add_error(axis='x', err_val=xerr) # add the x-error to the fit fit.add_error(axis='y', err_val=yerr) # add the y-errors to the fit fit.do_fit() # perform the fit fit.report(asymmetric_parameter_errors=True ) # print a report with asymmetric uncertainties # Optional: create a plot plot = Plot(fit) plot.plot(asymmetric_parameter_errors=True, ratio=True) # add the ratio data/function and asymmetric errors # Optional: create the contours profiler cpf = ContoursProfiler(fit) cpf.plot_profiles_contours_matrix( ) # plot the contour profile matrix for all parameters
derivative of the model function it will vary depending on our choice of model parameters. This distorts our likelihood function - the minimum of a chi2 cost function will no longer be shaped like a parabola (with a model parameter on the x axis and chi2 on the y axis). The effects of this deformation are explained in the non_linear_fit.py example. """ import matplotlib.pyplot as plt from kafe2 import XYContainer, Fit, Plot from kafe2.fit.tools import ContoursProfiler # Construct a fit with data loaded from a yaml file. The model function is the default of f(x) = a * x + b nonlinear_fit = Fit(data=XYContainer.from_file('x_errors.yml')) # The x errors are much bigger than the y errors. This will cause a distortion of the likelihood function. nonlinear_fit.add_error('x', 1.0) nonlinear_fit.add_error('y', 0.1) # Perform the fit. nonlinear_fit.do_fit() # Optional: Print out a report on the fit results on the console. # Note the asymmetric_parameter_errors flag nonlinear_fit.report(asymmetric_parameter_errors=True) # Optional: Create a plot of the fit results using Plot. # Note the asymmetric_parameter_errors flag plot = Plot(nonlinear_fit) plot.plot(fit_info=True, asymmetric_parameter_errors=True) # Optional: Calculate a detailed representation of the profile likelihood