Exemple #1
0
class Tracks(object):
    """docstring for Tracks"""
    def __init__(self, detection, trackId):
        super(Tracks, self).__init__()
        self.KF = KalmanFilter()
        self.KF.predict()
        self.KF.correct(np.matrix(detection).reshape(2, 1))
        self.trace = deque(maxlen=20)
        self.prediction = detection.reshape(1, 2)
        self.trackId = trackId
        self.skipped_frames = 0

    def predict(self, detection):
        self.prediction = np.array(self.KF.predict()).reshape(1, 2)
        self.KF.correct(np.matrix(detection).reshape(2, 1))
class TrackingObject(object):
	"""
	TrackingObject: maintains and updates all the information 
	for one tracked object
	"""
	def __init__(self, detection, trackId):
		super(TrackingObject, self).__init__()
		self.KF = KalmanFilter()
		self.KF.predict()
		self.KF.correct(np.matrix(detection).reshape(2,1))
		self.trace = deque(maxlen=20)
		self.prediction = detection.reshape(1,2)
		self.trackId = trackId
		self.skipped_frames = 0

	def predict_and_correct(self, measurement):
		self.prediction = np.array(self.KF.predict()).reshape(1,2)
		self.KF.correct(np.matrix(measurement).reshape(2,1))
Exemple #3
0
                x = est_rbt_x[:,
                              est_k]  # last state estimate vector from robot frame
                P = est_rbt_P[:, :, est_k]  # last covariance matrix
                Q = est_rbt_Q  # process noise covariance matrix
                R = est_rbt_R  # measurement noise covariance
                H = est_rbt_H  # observation matrix
                z = est_rbt_m[:, est_k]  # measurement vector
                u = matrix(
                    [[0], [0], [0]]
                )  # control input vector (don't give kalman filter knowledge about thruster inputs)

                A = est_rbt_A
                B = est_rbt_B

                state = KalmanFilter(x, P, z, u, A, B, Q, R, H)
                x, P = state.predict(x, P, u)
                x, K, P = state.update(x, P, z)

                # print('x', x)
                # # print('P', P)
                # # print('Q', Q)
                # # print('R', R)
                # # print('H', H)
                # # print('z', z)
                # # print('u', u)
                # # print('K', K)

                est_rbt_x[:, est_k + 1] = x
                est_rbt_L[:, :, est_k + 1] = K
                est_rbt_P[:, :, est_k + 1] = P
Exemple #4
0
                  no_of_state_measurements=no_of_state_measurements)

step = 0  # step counter, used for simulation of abscent measurements only

# Loop that runs throughout the time array defined previously
for t in time:

    #Simulate real speed
    real_speed_x = initial_speed_x + np.random.randn() * np.sqrt(
        acceleration_variance)
    real_speed_y = initial_speed_y + np.random.randn() * np.sqrt(
        acceleration_variance)

    # Simulate real position
    real_pos_x = real_pos_x + dt * real_speed_x
    real_pos_y = real_pos_y + dt * real_speed_y

    # Simulate measurements with noise
    meas_value_x = real_pos_x + np.random.randn() * np.sqrt(meas_variance)
    meas_value_y = real_pos_y + np.random.randn() * np.sqrt(meas_variance)

    # Simulation of abscent measurements
    if step > 70 and step < 110:
        meas_value_x, meas_value_y = 0, 0

    # Assign obtained measurements to measurement array
    z = np.array([meas_value_x, meas_value_y])

    kf.predict(dt=dt)
    kf.update(state_measurement=z)
    step += 1  # increment step