def test_convolve1d_3(): npr.seed(3) for ii in xrange(NUM_TRIALS): np_A = npr.randn(5, 50) np_B = npr.randn(6 * 5, 4) A = kayak.Parameter(np_A) B = kayak.Parameter(np_B) C = kayak.Convolve1d(A, B, ncolors=5) assert_equals(C.value.shape, (5, (10 - 6 + 1) * 4))
def test_convolve1d_1(): npr.seed(3) for ii in xrange(NUM_TRIALS): np_A = npr.randn(5, 6) np_B = npr.randn(6, 7) A = kayak.Parameter(np_A) B = kayak.Parameter(np_B) C = kayak.Convolve1d(A, B, ncolors=1) # If the filters are the same size as the data assert C.value.shape == (5, 7)
def test_convolve1d_grad_1(): npr.seed(3) for ii in xrange(NUM_TRIALS): np_A = npr.randn(5, 6) np_B = npr.randn(6, 7) A = kayak.Parameter(np_A) B = kayak.Parameter(np_B) C = kayak.Convolve1d(A, B) D = kayak.MatSum(C) D.value assert_equals(D.grad(A).shape, (5, 6)) assert_equals(D.grad(B).shape, (6, 7)) assert_less(kayak.util.checkgrad(A, D), MAX_GRAD_DIFF) assert_less(kayak.util.checkgrad(B, D), MAX_GRAD_DIFF)