Exemple #1
0
def __main__():
    logging_lvl = logging.INFO

    args = _get_cl_args()
    if args.debug == "DEBUG":
        logging_lvl = logging.DEBUG
    else:
        # set level to display nothing
        logging_lvl = logging.INFO

    global kb_ID
    kb_client = KnowledgeBaseClient(False)
    kb_ID = (kb_client.register())['details']

    logging.basicConfig(stream=sys.stderr, level=logging_lvl)

    tags = {
        TAG_DRS : {'desc' : 'DRS structure', 'doc' : DESC_DRS},
        TAG_ANSWER : {'desc' : 'stupid answer', 'doc' : DESC_ANSWER}
    }

    logging.info("\tQA module registered")
    #TODO register tags nedeed?

    qa_service = QaService(kb_ID,logging_lvl)
    t1 = Qa_Thread(qa_service)
    t1.start()

    k_service = ConstantFromkB(kb_ID,logging_lvl)
    t2 = K_Thread(k_service)
    t2.start()
Exemple #2
0
def __main__():
    kb_client = KnowledgeBaseClient(False)
    kb_ID = (kb_client.register())['details']

    tags = [{ TAG_ANSWER : {'desc' : 'Fake by ENLP', 'doc' : 'FAKE by ENLP'}},
            { TAG_VISION : {'desc' : 'Fake by ENLP', 'doc' : 'FAKE by ENLP'}},
            { TAG_USER_TRANSCRIPT : {'desc' : 'Fake by ENLP', 'doc' : 'FAKE by ENLP'}}]
    kb_client.registerTags(kb_ID, tags[0])
    kb_client.registerTags(kb_ID, tags[1])
    kb_client.registerTags(kb_ID, tags[2])

    obj_from_vision = {
        "tag": TAG_VISION,
        "is_interlocutor" : "True",
        "time_stamp" : str(datetime.datetime.now()),
        'emotion': {
            'sadness':   0.34,
            'calm':      0.48,
            'disgust':   0.54,
            'anger':     0.67,
            'surprise':  0.77,
            'fear':      0.54,
            'happiness': 0.23
            }
        }
    obj_from_erasmus = {
        "tag": TAG_ANSWER,
        "text": "Risposta degli erasmus. bla bla bla",
        "user_query" : "Dove è la lezione del professor attardi?",
        "time_stamp" : 1,
        "language" : "it"
    }

    obj_from_stt = {
    	"tag": TAG_USER_TRANSCRIPT,
    	"text": "Dove è la lezione del professor attardi",
        "language": "it"
	}

    print("sending Vision data:")
    res = kb_client.addFact(kb_ID, TAG_VISION, 1, 100, obj_from_vision)
    print("vision data response:")
    print(res)
    time.sleep(1)

    print("sending STT data:")
    res = kb_client.addFact(kb_ID, TAG_USER_TRANSCRIPT, 1, 100, obj_from_stt)
    print("STT data response:")
    print(res)
    time.sleep(1)

    print("sending erasmus data:")
    res = kb_client.addFact(kb_ID, TAG_ANSWER, 1, 100, obj_from_erasmus)
    print("erasmus data response:")
    print(res)
Exemple #3
0
def __main__():
    kb_client = KnowledgeBaseClient(False)
    kb_ID = (kb_client.register())['details']
    tags = {TAG_ANSWER: {'desc': 'Fake by ENLP', 'doc': 'FAKE by ENLP'}}
    kb_client.registerTags(kb_ID, tags)
    obj_from_erasmus = {
        "tag": TAG_ANSWER,
        "text": "Professor Attardi",
        "user_query": "What time Prof. Gervasi teaches Smart Application?",
        "time_stamp": 1
    }
    res = kb_client.addFact(kb_ID, TAG_ANSWER, 1, 100, obj_from_erasmus)
    print(res)
Exemple #4
0
def __main__():
    kb_client = KnowledgeBaseClient(False)
    kb_ID = (kb_client.register())['details']
    kb_client.registerTags(kb_ID, { TAG_USER_TRANSCRIPT : {'desc' : 'Fake by ENLP', 'doc' : 'FAKE by ENLP'} })
    obj_from_stt = {
	"tag": TAG_USER_TRANSCRIPT,
    "timestamp" : 7,
    "ID": "fake_stt",
	"text": "We will build a great wall",
    "language": "en",
    "valence" :0.5,
    "arousal" : 0.5
	}
    res = kb_client.addFact(kb_ID, TAG_USER_TRANSCRIPT, 1, 100, obj_from_stt)
    print(res)
Exemple #5
0
def __main__():
    logging_lvl = logging.INFO

    args = _get_cl_args()
    if args.debug == "DEBUG":
        logging_lvl = logging.DEBUG
    else:
        # set level to display nothing
        logging_lvl = logging.INFO

    kb_client = KnowledgeBaseClient(True)
    global kb_ID
    kb_ID = (kb_client.register())['details']

    logging.basicConfig(stream=sys.stderr, level=logging_lvl)

    tags = { TAG_USER_EMOTION : {'desc' : 'Emotion of what user said', 'doc' : DESC_USER_EMOTION},
            TAG_ELF_EMOTION : {'desc' : 'Internal emotion of ELF', 'doc' : DESC_ELF_EMOTION},
            TAG_COLORED_ANSWER : {'desc' : 'Reply to the user with emotion content in it', 'doc' : DESC_COLORED_ANSWER}
    }

    tag_list = [TAG_USER_EMOTION, TAG_ELF_EMOTION, TAG_COLORED_ANSWER]
    kb_client.registerTags(kb_ID, tags)
    """
    for tag in tag_list:
        check_tag = kb_client.getTagDetails([tag])
        if not check_tag['success']:
            res = kb_client.registerTags(kb_ID, { tag : tags[tag] } )
            if not res['success']:
                logging.critical(res['details'])
                return
    """

    logging.info("\tEmotional NLP module registered")

    ett_service = EttService(kb_ID, logging_lvl)
    t1 = EttThread(ett_service)
    t1.start()

    tte_service = TteService(kb_ID,logging_lvl)
    t2 = TteThread(tte_service)
    t2.start()

    ies_service = IESService(kb_ID, logging_lvl)
    t3 = IESThread(ies_service)
    t3.start()
Exemple #6
0
import json

from kb import KnowledgeBaseClient

k = KnowledgeBaseClient(True)
myID = k.register()['details']

registering = k.registerTags(myID, {
    "RDF": "an rdf triple",
    "TEST": "test data"
})
print(registering)
if (registering['success'] == 0):
    print('registration failed')


def callbfun(res):
    print("callback:")
    print(res)


print(k.subscribe(myID, {"_data": {"prova": "$x"}}, callbfun))

print(k.addFact(myID, "TEST", 1, 50, {"prova": 1}))
print(k.addFact(myID, "TEST", 1, 50, {"prova": 2}))
print(k.addFact(myID, "TEST", 1, 50, {"prova": 3}))

print(k.removeFact(myID, {"_data": {"prova": 2}}))
print(k.queryBind({"_data": {"prova": "$x"}}))

print(k.addFact(myID, "TEST", 1, 50, {"prova": "callb"}))
Exemple #7
0
class GNLP_Service:
    def __init__(self):
        listTag = {
            'NLP_ANSWER': {
                'desc': 'general_nlp_answer',
                'doc': 'nlp_answer_doc'
            },
            'NLP_ANALYSIS': {
                'desc': 'parse_trees_and_entity_rec',
                'doc': 'nlp_analysis_doc'
            }
        }
        self.KBC = KnowledgeBaseClient(True)
        self.ID = (self.KBC.register())['details']
        nlp_answer_info = {
            'desc': 'Query answer from General NLP',
            'doc': 'doc about nlp_answer'
        }
        nlp_analysis_info = {
            'desc': 'Query analysis from General NLP',
            'doc': 'doc about nlp_analysis'
        }
        self.KBC.registerTags(self.ID, {
            'NLP_ANSWER': nlp_answer_info,
            'NLP_ANALYSIS': nlp_analysis_info
        })
        print("Registered to the KB")

    def analyse(self, *res):
        '''
		Callback that analyse the user query
		TODO: Handle the different intents and querys the KB for the
			needed informations
		'''
        print("Analysing...")

        print(res)
        obj = res[0]['details'][0]['object']['_data']
        question = obj['text']
        lang = obj['language']
        ts = obj['timestamp']
        print(question)
        #question = question['text']
        luis_analysis = NLP_Understand(question, language=lang)
        spacy_analysis = get_dependency_tree(question, language=lang)
        self.KBC.addFact(
            self.ID, "NLP_ANALYSIS", 1, 50, {
                "tag": "NLP_ANALYSIS",
                "language": lang,
                "entities": luis_analysis,
                "dependencies": spacy_analysis,
                "user_query": question,
                "timestamp": ts
            })
        # Logging some infos

        pp = pprint.PrettyPrinter()
        pp.pprint(luis_analysis)
        pp.pprint(spacy_analysis)
        print(question)

        self.answer(question, lang, ts)

    def answer(self, question, lang, ts):
        '''
		Callback that answer the user query
		'''

        print("Answering...")
        answer = "Non ho barzellette al momento per ora!"

        self.KBC.addFact(
            self.ID, "NLP_ANSWER", 1, 50, {
                "tag": "NLP_ANSWER",
                "language": lang,
                "text": answer,
                "user_query": question,
                "timestamp": ts
            })

    def start_service(self):

        TAG_USER_TRANSCRIPT = "AV_IN_TRANSC_EMOTION"
        TAG_CRW_RAW_INFO = "CRAWLER_DATA_ENTRY"
        TAG_REASONER_OUTPUT = "REASONING_FRAME"

        self.KBC.subscribe(
            self.ID, {
                "_data": {
                    "tag": TAG_USER_TRANSCRIPT,
                    "text": "$d",
                    "language": "$lang",
                    "timestamp": "$ts"
                }
            }, self.analyse)

        print("Subscribed to the KB")
Exemple #8
0
from kb import KnowledgeBaseClient

kb = KnowledgeBaseClient(True)
if (sys.argv[1] == "query"): r = kb.query(json.loads(sys.argv[2]))
elif (sys.argv[1] == "addfact"):
    r = kb.addFact(sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5],
                   json.loads(sys.argv[6]))
elif (sys.argv[1] == "addrule"):
    r = kb.addRule(sys.argv[2], sys.argv[3], sys.argv[4])
elif (sys.argv[1] == "removefact"):
    r = kb.removeFact(sys.argv[2], json.loads(sys.argv[3]))
elif (sys.argv[1] == "removerule"):
    r = kb.removeRule(sys.argv[2], json.loads(sys.argv[3]))
elif (sys.argv[1] == "updatefact"):
    r = kb.updateFactByID(sys.argv[2], sys.argv[3], sys.argv[4], sys.argv[5],
                          sys.argv[6], json.loads(sys.argv[7]))
elif (sys.argv[1] == "registertags"):
    r = kb.registerTags(sys.argv[2], json.loads(sys.argv[3]))
elif (sys.argv[1] == "tagdetails"):
    r = kb.getTagDetails(sys.argv[2:])
elif (sys.argv[1] == "getalltags"):
    r = kb.getAllTags(
        len(sys.argv) >= 3 and sys.argv[2].lower() in ["true", "yes", "y"])
elif (sys.argv[1] == "register"):
    r = kb.register()
else:
    r = "invalid argument"
    print(sys.argv[2:])
print(r)
Exemple #9
0
import sys
from interface_tags import PATH_TO_KB_MODULE
sys.path.insert(0, PATH_TO_KB_MODULE)
from kb import KnowledgeBaseClient

client = KnowledgeBaseClient(False)
kb_id = (client.register())['details']

rules = [
    '{"_meta":{"tag":"TEACHING"}, "teach": "$prof", "room": "$room", "course" : "$course" } <- {"_meta":{"tag":"crawler_course"}, "_data":{"data": {"name" : "$course", "teacher_name": "$prof"}}};{"_meta":{"tag":"crawler_room_event"},"_predicates":[["containsString", ["$course2", "$course"]]], "_data": {"data": {"aula" : "$room", "descrizione" : "$course2"}}}'
    #'{"_meta":{"tag":"TEACHING"}, "teach": "$prof", "room": "$room", "course" : "$course" } <- {"_meta":{"tag":"crawler_course"}, "_data":{"data": {"name" : "$course", "teacher_name": "$prof"}}};{"_meta":{"tag":"crawler_room_event"}, "_data": {"data": {"aula" : "$room", "descrizione" : "$course"}}}'
    #'{"tag":"teaching": "$prof", "room": "$room", "course" : "$course" } <- {"data":{"name" : "$course", "teacher_name": "$prof"}};{"data":{"aula" : "$room", "descrizione" : "$course"}}'
]
"""client.removeRule(kb_id,2)
for rule in rules:
    x = client.addRule(kb_id, "ENLP_EMOTIVE_ANSWER", rule)
    print(x)
"""
#print(client.query({"_data" : {"name" : "nlpcourse", "teacher_name": "Giuseppe Attardi"}}))
#print(client.query({"_data" : {"aula" : "$X1", "descrizione": "nlpcourse"}}))

res = client.query({"_data": {"teach": "GIUSEPPE ATTARDI", "room": "$x"}})
#res = client.query({"_data":{"teach":"$x"}})

print(res)

# DO NOT THIS ANYMORE
#res = client.query({"_data": "$x"})