Exemple #1
0
def test_reasoning_v6():
    torch.set_num_threads(multiprocessing.cpu_count())

    embedding_size = 50

    torch.manual_seed(0)
    rs = np.random.RandomState(0)

    triples = [('a', 'p', 'b'), ('b', 'q', 'c'), ('c', 'p', 'd'),
               ('d', 'q', 'e'), ('e', 'p', 'f'), ('f', 'q', 'g'),
               ('g', 'p', 'h'), ('h', 'q', 'i'), ('i', 'p', 'l'),
               ('l', 'q', 'm'), ('m', 'p', 'n'), ('n', 'q', 'o'),
               ('o', 'p', 'p'), ('p', 'q', 'q'), ('q', 'p', 'r'),
               ('r', 'q', 's'), ('s', 'p', 't'), ('t', 'q', 'u'),
               ('u', 'p', 'v'), ('v', 'q', 'w'), ('x', 'r', 'y'),
               ('x', 's', 'y')]

    entity_lst = sorted({e
                         for (e, _, _) in triples}
                        | {e
                           for (_, _, e) in triples})
    predicate_lst = sorted({p for (_, p, _) in triples})

    nb_entities = len(entity_lst)
    nb_predicates = len(predicate_lst)

    entity_to_index = {e: i for i, e in enumerate(entity_lst)}
    predicate_to_index = {p: i for i, p in enumerate(predicate_lst)}

    for st in ['min', 'concat']:
        with torch.no_grad():
            kernel = GaussianKernel()

            entity_embeddings = nn.Embedding(nb_entities,
                                             embedding_size * 2,
                                             sparse=True)
            predicate_embeddings = nn.Embedding(nb_predicates,
                                                embedding_size * 2,
                                                sparse=True)

            fact_rel = torch.from_numpy(
                np.array([predicate_to_index[p] for (_, p, _) in triples]))
            fact_arg1 = torch.from_numpy(
                np.array([entity_to_index[s] for (s, _, _) in triples]))
            fact_arg2 = torch.from_numpy(
                np.array([entity_to_index[o] for (_, _, o) in triples]))
            facts = [fact_rel, fact_arg1, fact_arg2]

            model = NeuralKB(entity_embeddings=entity_embeddings,
                             predicate_embeddings=predicate_embeddings,
                             kernel=kernel,
                             facts=facts,
                             scoring_type=st)

            indices = torch.from_numpy(
                np.array([predicate_to_index['p'], predicate_to_index['q']]))
            reformulator = SymbolicReformulator(predicate_embeddings, indices)

            k = 5

            rhoppy0 = RecursiveHoppy(model,
                                     entity_embeddings,
                                     hops=reformulator,
                                     depth=0,
                                     k=k)
            rhoppy1 = RecursiveHoppy(model,
                                     entity_embeddings,
                                     hops=reformulator,
                                     depth=1,
                                     k=k)
            rhoppy2 = RecursiveHoppy(model,
                                     entity_embeddings,
                                     hops=reformulator,
                                     depth=2,
                                     k=k)
            rhoppy3 = RecursiveHoppy(model,
                                     entity_embeddings,
                                     hops=reformulator,
                                     depth=3,
                                     k=k)
            rhoppy4 = RecursiveHoppy(model,
                                     entity_embeddings,
                                     hops=reformulator,
                                     depth=4,
                                     k=k)

            xs_np = rs.randint(nb_entities, size=12)
            xp_np = rs.randint(nb_predicates, size=12)
            xo_np = rs.randint(nb_entities, size=12)

            xs_np[0] = entity_to_index['a']
            xp_np[0] = predicate_to_index['r']
            xo_np[0] = entity_to_index['c']

            xs_np[1] = entity_to_index['a']
            xp_np[1] = predicate_to_index['r']
            xo_np[1] = entity_to_index['e']

            xs_np[2] = entity_to_index['a']
            xp_np[2] = predicate_to_index['r']
            xo_np[2] = entity_to_index['g']

            xs_np[3] = entity_to_index['a']
            xp_np[3] = predicate_to_index['r']
            xo_np[3] = entity_to_index['i']

            xs_np[4] = entity_to_index['a']
            xp_np[4] = predicate_to_index['r']
            xo_np[4] = entity_to_index['m']

            xs_np[5] = entity_to_index['a']
            xp_np[5] = predicate_to_index['r']
            xo_np[5] = entity_to_index['o']

            xs_np[6] = entity_to_index['a']
            xp_np[6] = predicate_to_index['r']
            xo_np[6] = entity_to_index['q']

            xs_np[7] = entity_to_index['a']
            xp_np[7] = predicate_to_index['r']
            xo_np[7] = entity_to_index['s']

            xs_np[8] = entity_to_index['a']
            xp_np[8] = predicate_to_index['r']
            xo_np[8] = entity_to_index['u']

            # xs_np[9] = entity_to_index['a']
            # xp_np[9] = predicate_to_index['r']
            # xo_np[9] = entity_to_index['w']

            xs = torch.from_numpy(xs_np)
            xp = torch.from_numpy(xp_np)
            xo = torch.from_numpy(xo_np)

            xs_emb = entity_embeddings(xs)
            xp_emb = predicate_embeddings(xp)
            xo_emb = entity_embeddings(xo)

            scores0 = rhoppy0.forward(xp_emb, xs_emb, xo_emb)
            inf0 = rhoppy0.score(xp_emb, xs_emb, xo_emb)

            for i in range(xs.shape[0]):
                scores_sp, scores_po = scores0
                inf_np = inf0.cpu().numpy()

                scores_sp_np = scores_sp.cpu().numpy()
                scores_po_np = scores_po.cpu().numpy()

                np.testing.assert_allclose(inf_np[i],
                                           scores_sp_np[i, xo[i]],
                                           rtol=1e-5,
                                           atol=1e-5)
                np.testing.assert_allclose(inf_np[i],
                                           scores_po_np[i, xs[i]],
                                           rtol=1e-5,
                                           atol=1e-5)

            scores1 = rhoppy1.forward(xp_emb, xs_emb, xo_emb)
            inf1 = rhoppy1.score(xp_emb, xs_emb, xo_emb)

            for i in range(xs.shape[0]):
                scores_sp, scores_po = scores1
                inf_np = inf1.cpu().numpy()

                scores_sp_np = scores_sp.cpu().numpy()
                scores_po_np = scores_po.cpu().numpy()

                np.testing.assert_allclose(inf_np[i],
                                           scores_sp_np[i, xo[i]],
                                           rtol=1e-5,
                                           atol=1e-5)
                np.testing.assert_allclose(inf_np[i],
                                           scores_po_np[i, xs[i]],
                                           rtol=1e-5,
                                           atol=1e-5)

            scores2 = rhoppy2.forward(xp_emb, xs_emb, xo_emb)
            inf2 = rhoppy2.score(xp_emb, xs_emb, xo_emb)

            for i in range(xs.shape[0]):
                scores_sp, scores_po = scores2
                inf_np = inf2.cpu().numpy()

                scores_sp_np = scores_sp.cpu().numpy()
                scores_po_np = scores_po.cpu().numpy()

                np.testing.assert_allclose(inf_np[i],
                                           scores_sp_np[i, xo[i]],
                                           rtol=1e-1,
                                           atol=1e-1)
                np.testing.assert_allclose(inf_np[i],
                                           scores_po_np[i, xs[i]],
                                           rtol=1e-1,
                                           atol=1e-1)

            scores3 = rhoppy3.forward(xp_emb, xs_emb, xo_emb)
            inf3 = rhoppy3.score(xp_emb, xs_emb, xo_emb)

            for i in range(xs.shape[0]):
                scores_sp, scores_po = scores3
                inf_np = inf3.cpu().numpy()

                scores_sp_np = scores_sp.cpu().numpy()
                scores_po_np = scores_po.cpu().numpy()

                np.testing.assert_allclose(inf_np[i],
                                           scores_sp_np[i, xo[i]],
                                           rtol=1e-1,
                                           atol=1e-1)
                np.testing.assert_allclose(inf_np[i],
                                           scores_po_np[i, xs[i]],
                                           rtol=1e-1,
                                           atol=1e-1)

            scores4 = rhoppy4.forward(xp_emb, xs_emb, xo_emb)
            inf4 = rhoppy4.score(xp_emb, xs_emb, xo_emb)

            for i in range(xs.shape[0]):
                scores_sp, scores_po = scores4
                inf_np = inf4.cpu().numpy()

                scores_sp_np = scores_sp.cpu().numpy()
                scores_po_np = scores_po.cpu().numpy()

                np.testing.assert_allclose(inf_np[i],
                                           scores_sp_np[i, xo[i]],
                                           rtol=1e-1,
                                           atol=1e-1)
                np.testing.assert_allclose(inf_np[i],
                                           scores_po_np[i, xs[i]],
                                           rtol=1e-1,
                                           atol=1e-1)

            print(inf0)
            print(inf1)
            print(inf2)
            print(inf3)
            print(inf4)

            inf0_np = inf0.cpu().numpy()
            inf1_np = inf1.cpu().numpy()
            inf2_np = inf2.cpu().numpy()
            inf3_np = inf3.cpu().numpy()
            inf4_np = inf4.cpu().numpy()

            np.testing.assert_allclose(inf0_np,
                                       [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                       rtol=1e-1,
                                       atol=1e-1)
            np.testing.assert_allclose(inf1_np,
                                       [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                       rtol=1e-1,
                                       atol=1e-1)
            np.testing.assert_allclose(inf2_np,
                                       [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
                                       rtol=1e-1,
                                       atol=1e-1)
            np.testing.assert_allclose(inf3_np,
                                       [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0],
                                       rtol=1e-1,
                                       atol=1e-1)
            np.testing.assert_allclose(inf4_np,
                                       [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0],
                                       rtol=1e-1,
                                       atol=1e-1)
Exemple #2
0
def test_rhoppy_v1():
    nb_entities = 10
    nb_predicates = 5
    embedding_size = 10

    rs = np.random.RandomState(0)

    for _ in range(8):
        for nb_hops in range(3):
            for depth in range(3):
                for use_attention in [True, False]:
                    with torch.no_grad():
                        entity_embeddings = nn.Embedding(nb_entities,
                                                         embedding_size * 2,
                                                         sparse=True)
                        predicate_embeddings = nn.Embedding(nb_predicates,
                                                            embedding_size * 2,
                                                            sparse=True)

                        base = ComplEx(entity_embeddings)

                        if use_attention:
                            reformulator = AttentiveReformulator(
                                nb_hops, predicate_embeddings)
                        else:
                            reformulator = LinearReformulator(
                                nb_hops, embedding_size * 2)

                        model = RecursiveHoppy(
                            model=base,
                            entity_embeddings=entity_embeddings,
                            hops=reformulator,
                            depth=depth)

                        xs = torch.LongTensor(rs.randint(nb_entities, size=32))
                        xp = torch.LongTensor(
                            rs.randint(nb_predicates, size=32))
                        xo = torch.LongTensor(rs.randint(nb_entities, size=32))

                        xs_emb = entity_embeddings(xs)
                        xp_emb = predicate_embeddings(xp)
                        xo_emb = entity_embeddings(xo)

                        scores = model.forward(xp_emb, xs_emb, xo_emb)
                        inf = model.score(xp_emb, xs_emb, xo_emb)

                        scores_sp, scores_po = scores

                        inf = inf.cpu().numpy()
                        scores_sp = scores_sp.cpu().numpy()
                        scores_po = scores_po.cpu().numpy()

                        for i in range(xs.shape[0]):
                            np.testing.assert_allclose(inf[i],
                                                       scores_sp[i, xo[i]],
                                                       rtol=1e-5,
                                                       atol=1e-5)
                            np.testing.assert_allclose(inf[i],
                                                       scores_po[i, xs[i]],
                                                       rtol=1e-5,
                                                       atol=1e-5)
Exemple #3
0
def test_reasoning_v4():
    torch.set_num_threads(multiprocessing.cpu_count())

    nb_entities = 10
    nb_predicates = 5
    embedding_size = 10

    rs = np.random.RandomState(0)

    triples = [('a', 'p', 'b'), ('b', 'q', 'c'), ('c', 'r', 'd'),
               ('d', 's', 'e')]

    entity_to_index = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4}
    predicate_to_index = {'p': 0, 'q': 1, 'r': 2, 's': 3}

    for st in ['min', 'concat']:
        with torch.no_grad():
            kernel = GaussianKernel()

            entity_embeddings = nn.Embedding(nb_entities,
                                             embedding_size * 2,
                                             sparse=True)
            predicate_embeddings = nn.Embedding(nb_predicates,
                                                embedding_size * 2,
                                                sparse=True)

            fact_rel = torch.from_numpy(
                np.array([predicate_to_index[p] for (_, p, _) in triples]))
            fact_arg1 = torch.from_numpy(
                np.array([entity_to_index[s] for (s, _, _) in triples]))
            fact_arg2 = torch.from_numpy(
                np.array([entity_to_index[o] for (_, _, o) in triples]))
            facts = [fact_rel, fact_arg1, fact_arg2]

            model = NeuralKB(entity_embeddings=entity_embeddings,
                             predicate_embeddings=predicate_embeddings,
                             kernel=kernel,
                             facts=facts,
                             scoring_type=st)

            indices = torch.from_numpy(
                np.array([
                    predicate_to_index['p'], predicate_to_index['q'],
                    predicate_to_index['r'], predicate_to_index['s']
                ]))
            reformulator = SymbolicReformulator(predicate_embeddings, indices)
            rhoppy = RecursiveHoppy(model,
                                    entity_embeddings,
                                    hops=reformulator,
                                    depth=0)

            xs_np = rs.randint(nb_entities, size=32)
            xp_np = rs.randint(nb_predicates, size=32)
            xo_np = rs.randint(nb_entities, size=32)

            xs_np[0] = 0
            xp_np[0] = 0
            xo_np[0] = 1

            xs_np[1] = 1
            xp_np[1] = 1
            xo_np[1] = 2

            xs_np[2] = 0
            xp_np[2] = 3
            xo_np[2] = 4

            xs = torch.from_numpy(xs_np)
            xp = torch.from_numpy(xp_np)
            xo = torch.from_numpy(xo_np)

            xs_emb = entity_embeddings(xs)
            xp_emb = predicate_embeddings(xp)
            xo_emb = entity_embeddings(xo)

            scores = model.forward(xp_emb, xs_emb, xo_emb)
            inf = model.score(xp_emb, xs_emb, xo_emb)

            scores_h = rhoppy.forward(xp_emb, xs_emb, xo_emb)
            inf_h = rhoppy.score(xp_emb, xs_emb, xo_emb)

            print(inf)
            print(inf_h)

            assert inf[0] > 0.95
            assert inf[1] > 0.95

            scores_sp, scores_po = scores
            scores_h_sp, scores_h_po = scores_h

            inf = inf.cpu().numpy()
            scores_sp = scores_sp.cpu().numpy()
            scores_po = scores_po.cpu().numpy()

            inf_h = inf_h.cpu().numpy()
            scores_h_sp = scores_h_sp.cpu().numpy()
            scores_h_po = scores_h_po.cpu().numpy()

            np.testing.assert_allclose(inf, inf_h)
            np.testing.assert_allclose(scores_sp, scores_h_sp)
            np.testing.assert_allclose(scores_po, scores_h_po)

            for i in range(xs.shape[0]):
                np.testing.assert_allclose(inf[i],
                                           scores_sp[i, xo[i]],
                                           rtol=1e-5,
                                           atol=1e-5)
                np.testing.assert_allclose(inf[i],
                                           scores_po[i, xs[i]],
                                           rtol=1e-5,
                                           atol=1e-5)

                np.testing.assert_allclose(inf_h[i],
                                           scores_h_sp[i, xo[i]],
                                           rtol=1e-5,
                                           atol=1e-5)
                np.testing.assert_allclose(inf_h[i],
                                           scores_h_po[i, xs[i]],
                                           rtol=1e-5,
                                           atol=1e-5)