def test_masking_v1(): nb_entities = 10 nb_predicates = 5 embedding_size = 10 init_size = 1.0 rs = np.random.RandomState(0) for _ in range(1): for position in [0, 1]: for st in ['min', 'concat']: with torch.no_grad(): triples = [ ('a', 'p', 'b'), ('c', 'q', 'd') ] entity_to_index = {'a': 0, 'b': 1, 'c': 2, 'd': 3} predicate_to_index = {'p': 0, 'q': 1} kernel = GaussianKernel() entity_embeddings = nn.Embedding(nb_entities, embedding_size * 2, sparse=True) predicate_embeddings = nn.Embedding(nb_predicates, embedding_size * 2, sparse=True) entity_embeddings.weight.data *= init_size predicate_embeddings.weight.data *= init_size fact_rel = torch.LongTensor(np.array([predicate_to_index[p] for (_, p, _) in triples])) fact_arg1 = torch.LongTensor(np.array([entity_to_index[s] for (s, _, _) in triples])) fact_arg2 = torch.LongTensor(np.array([entity_to_index[o] for (_, _, o) in triples])) facts = [fact_rel, fact_arg1, fact_arg2] model = NeuralKB(entity_embeddings=entity_embeddings, predicate_embeddings=predicate_embeddings, kernel=kernel, facts=facts, scoring_type=st) xs_np = rs.randint(nb_entities, size=32) xp_np = rs.randint(nb_predicates, size=32) xo_np = rs.randint(nb_entities, size=32) xi_np = np.array([position] * xs_np.shape[0]) xs_np[0] = 0 xp_np[0] = 0 xo_np[0] = 1 xs_np[1] = 2 xp_np[1] = 1 xo_np[1] = 3 xs = torch.LongTensor(xs_np) xp = torch.LongTensor(xp_np) xo = torch.LongTensor(xo_np) xi = torch.LongTensor(xi_np) xs_emb = entity_embeddings(xs) xp_emb = predicate_embeddings(xp) xo_emb = entity_embeddings(xo) model.mask_indices = xi scores = model.forward(xp_emb, xs_emb, xo_emb) inf = model.score(xp_emb, xs_emb, xo_emb) if position == 0: assert inf[0] < 0.5 assert inf[1] > 0.9 elif position == 1: assert inf[0] > 0.9 assert inf[1] < 0.5 scores_sp, scores_po = scores inf = inf.cpu().numpy() scores_sp = scores_sp.cpu().numpy() scores_po = scores_po.cpu().numpy() for i in range(xs.shape[0]): np.testing.assert_allclose(inf[i], scores_sp[i, xo[i]], rtol=1e-5, atol=1e-5) np.testing.assert_allclose(inf[i], scores_po[i, xs[i]], rtol=1e-5, atol=1e-5)
def test_masking_v2(): nb_entities = 10 nb_predicates = 5 embedding_size = 10 rs = np.random.RandomState(0) for _ in range(1): for position in [0, 1, 2]: for st in ['min', 'concat']: with torch.no_grad(): triples = [ ('a', 'p', 'b'), ('b', 'q', 'c'), ('a', 'p', 'c') ] entity_to_index = {'a': 0, 'b': 1, 'c': 2, 'd': 3} predicate_to_index = {'p': 0, 'q': 1} kernel = GaussianKernel() entity_emb = nn.Embedding(nb_entities, embedding_size * 2, sparse=True) predicate_emb = nn.Embedding(nb_predicates, embedding_size * 2, sparse=True) fact_rel = torch.LongTensor(np.array([predicate_to_index[p] for (_, p, _) in triples])) fact_arg1 = torch.LongTensor(np.array([entity_to_index[s] for (s, _, _) in triples])) fact_arg2 = torch.LongTensor(np.array([entity_to_index[o] for (_, _, o) in triples])) facts = [fact_rel, fact_arg1, fact_arg2] base = NeuralKB(entity_embeddings=entity_emb, predicate_embeddings=predicate_emb, kernel=kernel, facts=facts, scoring_type=st) indices = torch.LongTensor(np.array([predicate_to_index['p'], predicate_to_index['q']])) reformulator = SymbolicReformulator(predicate_emb, indices) model = SimpleHoppy(base, entity_emb, hops=reformulator) xs_np = rs.randint(nb_entities, size=32) xp_np = rs.randint(nb_predicates, size=32) xo_np = rs.randint(nb_entities, size=32) xi_np = np.array([position] * xs_np.shape[0]) xs_np[0] = 0 xp_np[0] = 0 xo_np[0] = 1 xs_np[1] = 1 xp_np[1] = 1 xo_np[1] = 2 xs_np[2] = 0 xp_np[2] = 0 xo_np[2] = 2 xs = torch.LongTensor(xs_np) xp = torch.LongTensor(xp_np) xo = torch.LongTensor(xo_np) xi = torch.LongTensor(xi_np) xs_emb = entity_emb(xs) xp_emb = predicate_emb(xp) xo_emb = entity_emb(xo) # xi = None base.mask_indices = xi scores = model.forward(xp_emb, xs_emb, xo_emb) inf = model.score(xp_emb, xs_emb, xo_emb) if position in {0, 1}: assert inf[2] < 0.5 else: assert inf[2] > 0.9 scores_sp, scores_po = scores inf = inf.cpu().numpy() scores_sp = scores_sp.cpu().numpy() scores_po = scores_po.cpu().numpy() for i in range(xs.shape[0]): np.testing.assert_allclose(inf[i], scores_sp[i, xo[i]], rtol=1e-5, atol=1e-5) np.testing.assert_allclose(inf[i], scores_po[i, xs[i]], rtol=1e-5, atol=1e-5)
def main(argv): parser = argparse.ArgumentParser('KBC Research', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--train', action='store', required=True, type=str) parser.add_argument('--dev', action='store', type=str, default=None) parser.add_argument('--test', action='store', type=str, default=None) parser.add_argument('--test-i', action='store', type=str, default=None) parser.add_argument('--test-ii', action='store', type=str, default=None) # model params parser.add_argument('--model', '-m', action='store', type=str, default='distmult', choices=['distmult', 'complex']) parser.add_argument('--embedding-size', '-k', action='store', type=int, default=100) parser.add_argument('--batch-size', '-b', action='store', type=int, default=100) parser.add_argument('--eval-batch-size', '-B', action='store', type=int, default=None) # training params parser.add_argument('--epochs', '-e', action='store', type=int, default=100) parser.add_argument('--learning-rate', '-l', action='store', type=float, default=0.1) parser.add_argument('--optimizer', '-o', action='store', type=str, default='adagrad', choices=['adagrad', 'adam', 'sgd']) parser.add_argument('--N2', action='store', type=float, default=None) parser.add_argument('--N3', action='store', type=float, default=None) parser.add_argument('--seed', action='store', type=int, default=0) parser.add_argument('--validate-every', '-V', action='store', type=int, default=None) parser.add_argument('--input-type', '-I', action='store', type=str, default='standard', choices=['standard', 'reciprocal']) parser.add_argument('--gradient-accumulation-steps', '--gas', action='store', type=int, default=1) parser.add_argument('--load', action='store', type=str, default=None) parser.add_argument('--save', action='store', type=str, default=None) parser.add_argument('--quiet', '-q', action='store_true', default=False) args = parser.parse_args(argv) import pprint pprint.pprint(vars(args)) train_path = args.train dev_path = args.dev test_path = args.test test_i_path = args.test_i test_ii_path = args.test_ii model_name = args.model optimizer_name = args.optimizer embedding_size = args.embedding_size batch_size = args.batch_size eval_batch_size = batch_size if args.eval_batch_size is None else args.eval_batch_size nb_epochs = args.epochs seed = args.seed learning_rate = args.learning_rate N2_weight = args.N2 N3_weight = args.N3 validate_every = args.validate_every input_type = args.input_type gradient_accumulation_steps = args.gradient_accumulation_steps load_path = args.load save_path = args.save is_quiet = args.quiet # set the seeds np.random.seed(seed) random_state = np.random.RandomState(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') logger.info(f'Device: {device}') data = Data(train_path=train_path, dev_path=dev_path, test_path=test_path, test_i_path=test_i_path, test_ii_path=test_ii_path, input_type=input_type) triples_name_pairs = [ (data.dev_triples, 'dev'), (data.test_triples, 'test'), (data.test_i_triples, 'test-I'), (data.test_ii_triples, 'test-II'), ] rank = embedding_size * 2 if model_name in {'complex'} else embedding_size init_size = 1e-3 entity_embeddings = nn.Embedding(data.nb_entities, rank, sparse=True) predicate_embeddings = nn.Embedding(data.nb_predicates, rank, sparse=True) entity_embeddings.weight.data *= init_size predicate_embeddings.weight.data *= init_size parameters_lst = nn.ModuleDict({ 'entities': entity_embeddings, 'predicates': predicate_embeddings }) parameters_lst.to(device) if load_path is not None: parameters_lst.load_state_dict(torch.load(load_path)) kernel = facts = None if model_name in {'ntpzero'}: kernel = GaussianKernel(slope=None) fact_rel = torch.from_numpy(np.array([data.predicate_to_idx[p] for (_, p, _) in data.train_triples])).to(device) fact_arg1 = torch.from_numpy(np.array([data.entity_to_idx[s] for (s, _, _) in data.train_triples])).to(device) fact_arg2 = torch.from_numpy(np.array([data.entity_to_idx[o] for (_, _, o) in data.train_triples])).to(device) facts = [fact_rel, fact_arg1, fact_arg2] model_factory = { 'distmult': lambda: DistMult(entity_embeddings=entity_embeddings), 'complex': lambda: ComplEx(entity_embeddings=entity_embeddings), 'ntpzero': lambda: NeuralKB(entity_embeddings=entity_embeddings, predicate_embeddings=predicate_embeddings, kernel=kernel, facts=facts) } assert model_name in model_factory model = model_factory[model_name]() model.to(device) logger.info('Model state:') for param_tensor in parameters_lst.state_dict(): logger.info(f'\t{param_tensor}\t{parameters_lst.state_dict()[param_tensor].size()}') optimizer_factory = { 'adagrad': lambda: optim.Adagrad(parameters_lst.parameters(), lr=learning_rate), 'adam': lambda: optim.Adam(parameters_lst.parameters(), lr=learning_rate), 'sgd': lambda: optim.SGD(parameters_lst.parameters(), lr=learning_rate) } assert optimizer_name in optimizer_factory optimizer = optimizer_factory[optimizer_name]() loss_function = nn.CrossEntropyLoss(reduction='mean') N2_reg = N2() if N2_weight is not None else None N3_reg = N3() if N3_weight is not None else None for epoch_no in range(1, nb_epochs + 1): batcher = Batcher(data, batch_size, 1, random_state) nb_batches = len(batcher.batches) epoch_loss_values = [] for batch_no, (batch_start, batch_end) in enumerate(batcher.batches, 1): xp_batch, xs_batch, xo_batch, xi_batch = batcher.get_batch(batch_start, batch_end) xp_batch = torch.from_numpy(xp_batch.astype('int64')).to(device) xs_batch = torch.from_numpy(xs_batch.astype('int64')).to(device) xo_batch = torch.from_numpy(xo_batch.astype('int64')).to(device) xi_batch = torch.from_numpy(xi_batch.astype('int64')).to(device) xp_batch_emb = predicate_embeddings(xp_batch) xs_batch_emb = entity_embeddings(xs_batch) xo_batch_emb = entity_embeddings(xo_batch) sp_scores, po_scores = model.forward(xp_batch_emb, xs_batch_emb, xo_batch_emb) factors = [model.factor(e) for e in [xp_batch_emb, xs_batch_emb, xo_batch_emb]] s_loss = loss_function(sp_scores, xo_batch) o_loss = loss_function(po_scores, xs_batch) loss = s_loss + o_loss loss += N2_weight * N2_reg(factors) if N2_weight is not None else 0.0 loss += N3_weight * N3_reg(factors) if N3_weight is not None else 0.0 if gradient_accumulation_steps > 1: loss = loss / gradient_accumulation_steps loss.backward() if batch_no % gradient_accumulation_steps == 0 or batch_no == nb_batches: optimizer.step() optimizer.zero_grad() loss_value = loss.item() epoch_loss_values += [loss_value] if not is_quiet: logger.info(f'Epoch {epoch_no}/{nb_epochs}\tBatch {batch_no}/{nb_batches}\tLoss {loss_value:.6f}') loss_mean, loss_std = np.mean(epoch_loss_values), np.std(epoch_loss_values) logger.info(f'Epoch {epoch_no}/{nb_epochs}\tLoss {loss_mean:.4f} ± {loss_std:.4f}') if validate_every is not None and epoch_no % validate_every == 0: for triples, name in [(t, n) for t, n in triples_name_pairs if len(t) > 0]: metrics = evaluate(entity_embeddings=entity_embeddings, predicate_embeddings=predicate_embeddings, test_triples=triples, all_triples=data.all_triples, entity_to_index=data.entity_to_idx, predicate_to_index=data.predicate_to_idx, model=model, batch_size=eval_batch_size, device=device) logger.info(f'Epoch {epoch_no}/{nb_epochs}\t{name} results\t{metrics_to_str(metrics)}') for triples, name in [(t, n) for t, n in triples_name_pairs if len(t) > 0]: metrics = evaluate(entity_embeddings=entity_embeddings, predicate_embeddings=predicate_embeddings, test_triples=triples, all_triples=data.all_triples, entity_to_index=data.entity_to_idx, predicate_to_index=data.predicate_to_idx, model=model, batch_size=eval_batch_size, device=device) logger.info(f'Final \t{name} results\t{metrics_to_str(metrics)}') if save_path is not None: torch.save(parameters_lst.state_dict(), save_path) logger.info("Training finished")
def main(argv): parser = argparse.ArgumentParser('KBC Research', formatter_class=argparse.ArgumentDefaultsHelpFormatter) parser.add_argument('--train', action='store', required=True, type=str) parser.add_argument('--dev', action='store', type=str, default=None) parser.add_argument('--test', action='store', type=str, default=None) parser.add_argument('--test-i', action='store', type=str, default=None) parser.add_argument('--test-ii', action='store', type=str, default=None) parser.add_argument('--embedding-size', '-k', action='store', type=int, default=20) parser.add_argument('--k-max', '-K', action='store', type=int, default=1) parser.add_argument('--max-depth', '-d', action='store', type=int, default=1) parser.add_argument('--hops', nargs='+', type=str, default=['1', '2']) # training params parser.add_argument('--epochs', '-e', action='store', type=int, default=100) parser.add_argument('--learning-rate', '-l', action='store', type=float, default=0.1) parser.add_argument('--batch-size', '-b', action='store', type=int, default=8) parser.add_argument('--N2', action='store', type=float, default=None) parser.add_argument('--N3', action='store', type=float, default=None) parser.add_argument('--reformulator', '-r', action='store', type=str, default='linear', choices=['static', 'linear', 'attentive', 'memory']) parser.add_argument('--nb-rules', '-R', action='store', type=int, default=4) parser.add_argument('--seed', action='store', type=int, default=0) parser.add_argument('--validate-every', '-V', action='store', type=int, default=None) parser.add_argument('--input-type', '-I', action='store', type=str, default='standard', choices=['standard', 'reciprocal']) parser.add_argument('--init-size', '-i', action='store', type=float, default=1.0) parser.add_argument('--load', action='store', type=str, default=None) parser.add_argument('--save', action='store', type=str, default=None) parser.add_argument('--quiet', '-q', action='store_true', default=False) args = parser.parse_args(argv) import pprint pprint.pprint(vars(args)) train_path = args.train dev_path = args.dev test_path = args.test test_i_path = args.test_i test_ii_path = args.test_ii embedding_size = args.embedding_size hops_str = args.hops nb_epochs = args.epochs learning_rate = args.learning_rate batch_size = args.batch_size N2_weight = args.N2 N3_weight = args.N3 reformulator_type = args.reformulator nb_rules = args.nb_rules eval_batch_size = batch_size seed = args.seed validate_every = args.validate_every input_type = args.input_type init_size = args.init_size load_path = args.load save_path = args.save is_quiet = args.quiet # set the seeds np.random.seed(seed) random_state = np.random.RandomState(seed) torch.manual_seed(seed) if torch.cuda.is_available(): torch.cuda.manual_seed(seed) # device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') device = 'cpu' logger.info(f'Device: {device}') if torch.cuda.is_available(): torch.set_default_tensor_type(torch.cuda.FloatTensor) data = Data(train_path=train_path, dev_path=dev_path, test_path=test_path, test_i_path=test_i_path, test_ii_path=test_ii_path, input_type=input_type) triples_name_pairs = [ (data.dev_triples, 'dev'), (data.test_triples, 'test'), (data.test_i_triples, 'test-I'), (data.test_ii_triples, 'test-II'), ] rank = embedding_size init_size = init_size entity_embeddings = nn.Embedding(data.nb_entities, rank, sparse=True) predicate_embeddings = nn.Embedding(data.nb_predicates, rank, sparse=True) entity_embeddings.weight.data *= init_size predicate_embeddings.weight.data *= init_size kernel = GaussianKernel(slope=1.0) fact_rel = torch.from_numpy(np.array([data.predicate_to_idx[p] for (_, p, _) in data.train_triples])).to(device) fact_arg1 = torch.from_numpy(np.array([data.entity_to_idx[s] for (s, _, _) in data.train_triples])).to(device) fact_arg2 = torch.from_numpy(np.array([data.entity_to_idx[o] for (_, _, o) in data.train_triples])).to(device) facts = [fact_rel, fact_arg1, fact_arg2] base_model = NeuralKB(entity_embeddings=entity_embeddings, predicate_embeddings=predicate_embeddings, facts=facts, kernel=kernel).to(device) memory = None def make_hop(s: str) -> Tuple[BaseReformulator, bool]: nonlocal memory if s.isdigit(): nb_hops, is_reversed = int(s), False else: nb_hops, is_reversed = int(s[:-1]), True res = None if reformulator_type in {'static'}: res = StaticReformulator(nb_hops, rank) elif reformulator_type in {'linear'}: res = LinearReformulator(nb_hops, rank) elif reformulator_type in {'attentive'}: res = AttentiveReformulator(nb_hops, predicate_embeddings) elif reformulator_type in {'memory'}: memory = MemoryReformulator.Memory(nb_hops, nb_rules, rank) if memory is None else memory res = MemoryReformulator(memory) elif reformulator_type in {'ntp'}: res = NTPReformulator(nb_hops=nb_hops, embedding_size=embedding_size, kernel=kernel) assert res is not None return res, is_reversed hops_lst = [make_hop(s) for s in hops_str] model = MultiHoppy(model=base_model, entity_embeddings=entity_embeddings, hops_lst=hops_lst).to(device) params_lst = [p for p in model.parameters()] + [predicate_embeddings.weight] params = nn.ParameterList(params_lst).to(device) if load_path is not None: model.load_state_dict(torch.load(load_path)) for tensor in params_lst: logger.info(f'\t{tensor.size()}\t{tensor.device}') optimizer = optim.Adagrad(params, lr=learning_rate) loss_function = nn.BCELoss() N2_reg = N2() if N2_weight is not None else None N3_reg = N3() if N3_weight is not None else None for epoch_no in range(1, nb_epochs + 1): batcher = Batcher(data, batch_size, 1, random_state) nb_batches = len(batcher.batches) epoch_loss_values = [] for batch_no, (batch_start, batch_end) in enumerate(batcher.batches, 1): xp_batch_np, xs_batch_np, xo_batch_np, xi_batch_np = batcher.get_batch(batch_start, batch_end) xp_batch = torch.from_numpy(xp_batch_np.astype('int64')).to(device) xs_batch = torch.from_numpy(xs_batch_np.astype('int64')).to(device) xo_batch = torch.from_numpy(xo_batch_np.astype('int64')).to(device) xi_batch = torch.from_numpy(xi_batch_np.astype('int64')).to(device) xp_batch_emb = predicate_embeddings(xp_batch) xs_batch_emb = entity_embeddings(xs_batch) xo_batch_emb = entity_embeddings(xo_batch) sp_scores, po_scores = model.forward(xp_batch_emb, xs_batch_emb, xo_batch_emb, mask_indices=xi_batch) factors = [model.factor(e) for e in [xp_batch_emb, xs_batch_emb, xo_batch_emb]] sp_objects = [data.sp_to_o_lst.get((xs, xp), None) for xs, xp in zip(xs_batch_np, xp_batch_np)] po_subjects = [data.po_to_s_lst.get((xp, xo), None) for xp, xo in zip(xp_batch_np, xo_batch_np)] sp_targets = compute_bce_targets(xp_batch.shape[0], data.nb_entities, sp_objects, device=device) po_targets = compute_bce_targets(xp_batch.shape[0], data.nb_entities, po_subjects, device=device) s_loss = loss_function(sp_scores, sp_targets) o_loss = loss_function(po_scores, po_targets) loss = s_loss + o_loss loss += N2_weight * N2_reg(factors) if N2_weight is not None else 0.0 loss += N3_weight * N3_reg(factors) if N3_weight is not None else 0.0 loss.backward() optimizer.step() optimizer.zero_grad() loss_value = loss.item() epoch_loss_values += [loss_value] if not is_quiet: logger.info(f'Epoch {epoch_no}/{nb_epochs}\tBatch {batch_no}/{nb_batches}\tLoss {loss_value:.6f}') loss_mean, loss_std = np.mean(epoch_loss_values), np.std(epoch_loss_values) logger.info(f'Epoch {epoch_no}/{nb_epochs}\tLoss {loss_mean:.4f} ± {loss_std:.4f}') if validate_every is not None and epoch_no % validate_every == 0: for triples, name in [(t, n) for t, n in triples_name_pairs if len(t) > 0]: metrics = evaluate(entity_embeddings=entity_embeddings, predicate_embeddings=predicate_embeddings, test_triples=triples, all_triples=data.all_triples, entity_to_index=data.entity_to_idx, predicate_to_index=data.predicate_to_idx, model=model, batch_size=eval_batch_size, device=device) logger.info(f'Epoch {epoch_no}/{nb_epochs}\t{name} results\t{metrics_to_str(metrics)}') for triples, name in [(t, n) for t, n in triples_name_pairs if len(t) > 0]: metrics = evaluate(entity_embeddings=entity_embeddings, predicate_embeddings=predicate_embeddings, test_triples=triples, all_triples=data.all_triples, entity_to_index=data.entity_to_idx, predicate_to_index=data.predicate_to_idx, model=model, batch_size=eval_batch_size, device=device) logger.info(f'Final \t{name} results\t{metrics_to_str(metrics)}') if save_path is not None: torch.save(model.state_dict(), save_path) logger.info("Training finished")
def test_learning_v2(): embedding_size = 100 torch.manual_seed(0) triples, hops = [], [] for i in range(16): triples += [(f'a{i}', 'p', f'b{i}'), (f'b{i}', 'q', f'c{i}')] hops += [(f'a{i}', 'r', f'c{i}')] entity_lst = sorted({e for (e, _, _) in triples + hops} | {e for (e, _, e) in triples + hops}) predicate_lst = sorted({p for (_, p, _) in triples + hops}) nb_entities, nb_predicates = len(entity_lst), len(predicate_lst) entity_to_index = {e: i for i, e in enumerate(entity_lst)} predicate_to_index = {p: i for i, p in enumerate(predicate_lst)} kernel = GaussianKernel() entity_embeddings = nn.Embedding(nb_entities, embedding_size * 2, sparse=True) predicate_embeddings = nn.Embedding(nb_predicates, embedding_size * 2, sparse=True) fact_rel = torch.LongTensor( np.array([predicate_to_index[p] for (_, p, _) in triples])) fact_arg1 = torch.LongTensor( np.array([entity_to_index[s] for (s, _, _) in triples])) fact_arg2 = torch.LongTensor( np.array([entity_to_index[o] for (_, _, o) in triples])) facts = [fact_rel, fact_arg1, fact_arg2] model = NeuralKB(entity_embeddings=entity_embeddings, predicate_embeddings=predicate_embeddings, kernel=kernel, facts=facts) reformulator = AttentiveReformulator(2, predicate_embeddings) hoppy = SimpleHoppy(model, entity_embeddings, hops=reformulator) for s, p, o in hops: xs_np = np.array([entity_to_index[s]]) xp_np = np.array([predicate_to_index[p]]) xo_np = np.array([entity_to_index[o]]) with torch.no_grad(): xs = torch.LongTensor(xs_np) xp = torch.LongTensor(xp_np) xo = torch.LongTensor(xo_np) xs_emb = entity_embeddings(xs) xp_emb = predicate_embeddings(xp) xo_emb = entity_embeddings(xo) inf = hoppy.score(xp_emb, xs_emb, xo_emb) inf_np = inf.cpu().numpy() assert inf_np < 0.5
def test_learning_v1(): embedding_size = 50 triples, hops = [], [] for i in range(16): triples += [(f'a{i}', 'p', f'b{i}'), (f'b{i}', 'q', f'c{i}')] hops += [(f'a{i}', 'r', f'c{i}')] entity_lst = sorted({e for (e, _, _) in triples + hops} | {e for (e, _, e) in triples + hops}) predicate_lst = sorted({p for (_, p, _) in triples + hops}) nb_entities, nb_predicates = len(entity_lst), len(predicate_lst) entity_to_index = {e: i for i, e in enumerate(entity_lst)} predicate_to_index = {p: i for i, p in enumerate(predicate_lst)} kernel = GaussianKernel() entity_embeddings = nn.Embedding(nb_entities, embedding_size * 2, sparse=True) predicate_embeddings = nn.Embedding(nb_predicates, embedding_size * 2, sparse=True) fact_rel = torch.LongTensor( np.array([predicate_to_index[p] for (_, p, _) in triples])) fact_arg1 = torch.LongTensor( np.array([entity_to_index[s] for (s, _, _) in triples])) fact_arg2 = torch.LongTensor( np.array([entity_to_index[o] for (_, _, o) in triples])) facts = [fact_rel, fact_arg1, fact_arg2] for st in ['min', 'concat']: model = NeuralKB(entity_embeddings=entity_embeddings, predicate_embeddings=predicate_embeddings, kernel=kernel, facts=facts, scoring_type=st) for s in entity_lst: for p in predicate_lst: for o in entity_lst: xs_np = np.array([entity_to_index[s]]) xp_np = np.array([predicate_to_index[p]]) xo_np = np.array([entity_to_index[o]]) with torch.no_grad(): xs = torch.LongTensor(xs_np) xp = torch.LongTensor(xp_np) xo = torch.LongTensor(xo_np) xs_emb = entity_embeddings(xs) xp_emb = predicate_embeddings(xp) xo_emb = entity_embeddings(xo) inf = model.score(xp_emb, xs_emb, xo_emb) inf_np = inf.cpu().numpy() if (s, p, o) in triples: assert inf_np[0] > 0.95 else: assert inf_np[0] < 0.01
def test_learning_v3(): embedding_size = 10 batch_size = 16 triples, hops = [], [] for i in range(16): triples += [(f'a{i}', 'p', f'b{i}'), (f'b{i}', 'q', f'c{i}')] hops += [(f'a{i}', 'r', f'c{i}')] entity_lst = sorted({e for (e, _, _) in triples + hops} | {e for (e, _, e) in triples + hops}) predicate_lst = sorted({p for (_, p, _) in triples + hops}) nb_entities, nb_predicates = len(entity_lst), len(predicate_lst) entity_to_index = {e: i for i, e in enumerate(entity_lst)} predicate_to_index = {p: i for i, p in enumerate(predicate_lst)} torch.manual_seed(0) kernel = GaussianKernel() entity_embeddings = nn.Embedding(nb_entities, embedding_size * 2, sparse=True) predicate_embeddings = nn.Embedding(nb_predicates, embedding_size * 2, sparse=True) fact_rel = torch.LongTensor( np.array([predicate_to_index[p] for (_, p, _) in triples])) fact_arg1 = torch.LongTensor( np.array([entity_to_index[s] for (s, _, _) in triples])) fact_arg2 = torch.LongTensor( np.array([entity_to_index[o] for (_, _, o) in triples])) facts = [fact_rel, fact_arg1, fact_arg2] model = NeuralKB(entity_embeddings=entity_embeddings, predicate_embeddings=predicate_embeddings, kernel=kernel, facts=facts) reformulator = AttentiveReformulator(2, predicate_embeddings) hoppy = SimpleHoppy(model, entity_embeddings, hops=reformulator) N3_reg = N3() params = [ p for p in hoppy.parameters() if not torch.equal(p, entity_embeddings.weight) and not torch.equal(p, predicate_embeddings.weight) ] loss_function = nn.CrossEntropyLoss(reduction='mean') p_emb = predicate_embeddings( torch.LongTensor(np.array([predicate_to_index['p']]))) q_emb = predicate_embeddings( torch.LongTensor(np.array([predicate_to_index['q']]))) # r_emb = predicate_embeddings(torch.LongTensor(np.array([predicate_to_index['r']]))) optimizer = optim.Adagrad(params, lr=0.1) hops_data = [] for i in range(128): hops_data += hops batches = make_batches(len(hops_data), batch_size) c, d = 0.0, 0.0 for batch_start, batch_end in batches: hops_batch = hops_data[batch_start:batch_end] s_lst = [s for (s, _, _) in hops_batch] p_lst = [p for (_, p, _) in hops_batch] o_lst = [o for (_, _, o) in hops_batch] xs_np = np.array([entity_to_index[s] for s in s_lst]) xp_np = np.array([predicate_to_index[p] for p in p_lst]) xo_np = np.array([entity_to_index[o] for o in o_lst]) xs = torch.LongTensor(xs_np) xp = torch.LongTensor(xp_np) xo = torch.LongTensor(xo_np) xs_emb = entity_embeddings(xs) xp_emb = predicate_embeddings(xp) xo_emb = entity_embeddings(xo) sp_scores, po_scores = hoppy.forward(xp_emb, xs_emb, xo_emb) loss = loss_function(sp_scores, xo) + loss_function(po_scores, xs) factors = [hoppy.factor(e) for e in [xp_emb, xs_emb, xo_emb]] loss += 0.1 * N3_reg(factors) tmp = hoppy.hops(xp_emb) hop_1_emb = tmp[0] hop_2_emb = tmp[1] c = kernel.pairwise(p_emb, hop_1_emb).mean().cpu().detach().numpy() d = kernel.pairwise(q_emb, hop_2_emb).mean().cpu().detach().numpy() loss.backward() optimizer.step() optimizer.zero_grad() assert c > 0.95 assert d > 0.95
def test_reasoning_v6(): torch.set_num_threads(multiprocessing.cpu_count()) embedding_size = 50 torch.manual_seed(0) rs = np.random.RandomState(0) triples = [('a', 'p', 'b'), ('b', 'q', 'c'), ('c', 'p', 'd'), ('d', 'q', 'e'), ('e', 'p', 'f'), ('f', 'q', 'g'), ('g', 'p', 'h'), ('h', 'q', 'i'), ('i', 'p', 'l'), ('l', 'q', 'm'), ('m', 'p', 'n'), ('n', 'q', 'o'), ('o', 'p', 'p'), ('p', 'q', 'q'), ('q', 'p', 'r'), ('r', 'q', 's'), ('s', 'p', 't'), ('t', 'q', 'u'), ('u', 'p', 'v'), ('v', 'q', 'w'), ('x', 'r', 'y'), ('x', 's', 'y')] entity_lst = sorted({e for (e, _, _) in triples} | {e for (_, _, e) in triples}) predicate_lst = sorted({p for (_, p, _) in triples}) nb_entities = len(entity_lst) nb_predicates = len(predicate_lst) entity_to_index = {e: i for i, e in enumerate(entity_lst)} predicate_to_index = {p: i for i, p in enumerate(predicate_lst)} for st in ['min', 'concat']: with torch.no_grad(): kernel = GaussianKernel() entity_embeddings = nn.Embedding(nb_entities, embedding_size * 2, sparse=True) predicate_embeddings = nn.Embedding(nb_predicates, embedding_size * 2, sparse=True) fact_rel = torch.from_numpy( np.array([predicate_to_index[p] for (_, p, _) in triples])) fact_arg1 = torch.from_numpy( np.array([entity_to_index[s] for (s, _, _) in triples])) fact_arg2 = torch.from_numpy( np.array([entity_to_index[o] for (_, _, o) in triples])) facts = [fact_rel, fact_arg1, fact_arg2] model = NeuralKB(entity_embeddings=entity_embeddings, predicate_embeddings=predicate_embeddings, kernel=kernel, facts=facts, scoring_type=st) indices = torch.from_numpy( np.array([predicate_to_index['p'], predicate_to_index['q']])) reformulator = SymbolicReformulator(predicate_embeddings, indices) k = 5 rhoppy0 = RecursiveHoppy(model, entity_embeddings, hops=reformulator, depth=0, k=k) rhoppy1 = RecursiveHoppy(model, entity_embeddings, hops=reformulator, depth=1, k=k) rhoppy2 = RecursiveHoppy(model, entity_embeddings, hops=reformulator, depth=2, k=k) rhoppy3 = RecursiveHoppy(model, entity_embeddings, hops=reformulator, depth=3, k=k) rhoppy4 = RecursiveHoppy(model, entity_embeddings, hops=reformulator, depth=4, k=k) xs_np = rs.randint(nb_entities, size=12) xp_np = rs.randint(nb_predicates, size=12) xo_np = rs.randint(nb_entities, size=12) xs_np[0] = entity_to_index['a'] xp_np[0] = predicate_to_index['r'] xo_np[0] = entity_to_index['c'] xs_np[1] = entity_to_index['a'] xp_np[1] = predicate_to_index['r'] xo_np[1] = entity_to_index['e'] xs_np[2] = entity_to_index['a'] xp_np[2] = predicate_to_index['r'] xo_np[2] = entity_to_index['g'] xs_np[3] = entity_to_index['a'] xp_np[3] = predicate_to_index['r'] xo_np[3] = entity_to_index['i'] xs_np[4] = entity_to_index['a'] xp_np[4] = predicate_to_index['r'] xo_np[4] = entity_to_index['m'] xs_np[5] = entity_to_index['a'] xp_np[5] = predicate_to_index['r'] xo_np[5] = entity_to_index['o'] xs_np[6] = entity_to_index['a'] xp_np[6] = predicate_to_index['r'] xo_np[6] = entity_to_index['q'] xs_np[7] = entity_to_index['a'] xp_np[7] = predicate_to_index['r'] xo_np[7] = entity_to_index['s'] xs_np[8] = entity_to_index['a'] xp_np[8] = predicate_to_index['r'] xo_np[8] = entity_to_index['u'] # xs_np[9] = entity_to_index['a'] # xp_np[9] = predicate_to_index['r'] # xo_np[9] = entity_to_index['w'] xs = torch.from_numpy(xs_np) xp = torch.from_numpy(xp_np) xo = torch.from_numpy(xo_np) xs_emb = entity_embeddings(xs) xp_emb = predicate_embeddings(xp) xo_emb = entity_embeddings(xo) scores0 = rhoppy0.forward(xp_emb, xs_emb, xo_emb) inf0 = rhoppy0.score(xp_emb, xs_emb, xo_emb) for i in range(xs.shape[0]): scores_sp, scores_po = scores0 inf_np = inf0.cpu().numpy() scores_sp_np = scores_sp.cpu().numpy() scores_po_np = scores_po.cpu().numpy() np.testing.assert_allclose(inf_np[i], scores_sp_np[i, xo[i]], rtol=1e-5, atol=1e-5) np.testing.assert_allclose(inf_np[i], scores_po_np[i, xs[i]], rtol=1e-5, atol=1e-5) scores1 = rhoppy1.forward(xp_emb, xs_emb, xo_emb) inf1 = rhoppy1.score(xp_emb, xs_emb, xo_emb) for i in range(xs.shape[0]): scores_sp, scores_po = scores1 inf_np = inf1.cpu().numpy() scores_sp_np = scores_sp.cpu().numpy() scores_po_np = scores_po.cpu().numpy() np.testing.assert_allclose(inf_np[i], scores_sp_np[i, xo[i]], rtol=1e-5, atol=1e-5) np.testing.assert_allclose(inf_np[i], scores_po_np[i, xs[i]], rtol=1e-5, atol=1e-5) scores2 = rhoppy2.forward(xp_emb, xs_emb, xo_emb) inf2 = rhoppy2.score(xp_emb, xs_emb, xo_emb) for i in range(xs.shape[0]): scores_sp, scores_po = scores2 inf_np = inf2.cpu().numpy() scores_sp_np = scores_sp.cpu().numpy() scores_po_np = scores_po.cpu().numpy() np.testing.assert_allclose(inf_np[i], scores_sp_np[i, xo[i]], rtol=1e-1, atol=1e-1) np.testing.assert_allclose(inf_np[i], scores_po_np[i, xs[i]], rtol=1e-1, atol=1e-1) scores3 = rhoppy3.forward(xp_emb, xs_emb, xo_emb) inf3 = rhoppy3.score(xp_emb, xs_emb, xo_emb) for i in range(xs.shape[0]): scores_sp, scores_po = scores3 inf_np = inf3.cpu().numpy() scores_sp_np = scores_sp.cpu().numpy() scores_po_np = scores_po.cpu().numpy() np.testing.assert_allclose(inf_np[i], scores_sp_np[i, xo[i]], rtol=1e-1, atol=1e-1) np.testing.assert_allclose(inf_np[i], scores_po_np[i, xs[i]], rtol=1e-1, atol=1e-1) scores4 = rhoppy4.forward(xp_emb, xs_emb, xo_emb) inf4 = rhoppy4.score(xp_emb, xs_emb, xo_emb) for i in range(xs.shape[0]): scores_sp, scores_po = scores4 inf_np = inf4.cpu().numpy() scores_sp_np = scores_sp.cpu().numpy() scores_po_np = scores_po.cpu().numpy() np.testing.assert_allclose(inf_np[i], scores_sp_np[i, xo[i]], rtol=1e-1, atol=1e-1) np.testing.assert_allclose(inf_np[i], scores_po_np[i, xs[i]], rtol=1e-1, atol=1e-1) print(inf0) print(inf1) print(inf2) print(inf3) print(inf4) inf0_np = inf0.cpu().numpy() inf1_np = inf1.cpu().numpy() inf2_np = inf2.cpu().numpy() inf3_np = inf3.cpu().numpy() inf4_np = inf4.cpu().numpy() np.testing.assert_allclose(inf0_np, [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], rtol=1e-1, atol=1e-1) np.testing.assert_allclose(inf1_np, [1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], rtol=1e-1, atol=1e-1) np.testing.assert_allclose(inf2_np, [1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], rtol=1e-1, atol=1e-1) np.testing.assert_allclose(inf3_np, [1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0], rtol=1e-1, atol=1e-1) np.testing.assert_allclose(inf4_np, [1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0], rtol=1e-1, atol=1e-1)
def test_reasoning_v5(): torch.set_num_threads(multiprocessing.cpu_count()) nb_entities = 10 nb_predicates = 5 embedding_size = 10 rs = np.random.RandomState(0) triples = [('a', 'p', 'b'), ('b', 'q', 'c'), ('c', 'r', 'd'), ('d', 's', 'e')] entity_to_index = {'a': 0, 'b': 1, 'c': 2, 'd': 3, 'e': 4} predicate_to_index = {'p': 0, 'q': 1, 'r': 2, 's': 3} for st in ['min', 'concat']: with torch.no_grad(): kernel = GaussianKernel() entity_embeddings = nn.Embedding(nb_entities, embedding_size * 2, sparse=True) predicate_embeddings = nn.Embedding(nb_predicates, embedding_size * 2, sparse=True) fact_rel = torch.from_numpy( np.array([predicate_to_index[p] for (_, p, _) in triples])) fact_arg1 = torch.from_numpy( np.array([entity_to_index[s] for (s, _, _) in triples])) fact_arg2 = torch.from_numpy( np.array([entity_to_index[o] for (_, _, o) in triples])) facts = [fact_rel, fact_arg1, fact_arg2] model = NeuralKB(entity_embeddings=entity_embeddings, predicate_embeddings=predicate_embeddings, kernel=kernel, facts=facts, scoring_type=st) indices = torch.from_numpy( np.array([ predicate_to_index['p'], predicate_to_index['q'], predicate_to_index['r'], predicate_to_index['s'] ])) reformulator = SymbolicReformulator(predicate_embeddings, indices) hoppy = SimpleHoppy(model, entity_embeddings, hops=reformulator) rhoppy = RecursiveHoppy(model, entity_embeddings, hops=reformulator, depth=1) xs_np = rs.randint(nb_entities, size=32) xp_np = rs.randint(nb_predicates, size=32) xo_np = rs.randint(nb_entities, size=32) xs_np[0] = 0 xp_np[0] = 0 xo_np[0] = 1 xs_np[1] = 1 xp_np[1] = 1 xo_np[1] = 2 xs_np[2] = 0 xp_np[2] = 3 xo_np[2] = 4 xs = torch.from_numpy(xs_np) xp = torch.from_numpy(xp_np) xo = torch.from_numpy(xo_np) xs_emb = entity_embeddings(xs) xp_emb = predicate_embeddings(xp) xo_emb = entity_embeddings(xo) scores = hoppy.forward(xp_emb, xs_emb, xo_emb) inf = hoppy.score(xp_emb, xs_emb, xo_emb) scores_h = rhoppy.depth_r_forward(xp_emb, xs_emb, xo_emb, depth=1) inf_h = rhoppy.depth_r_score(xp_emb, xs_emb, xo_emb, depth=1) print(inf) print(inf_h) assert inf[2] > 0.95 scores_sp, scores_po = scores scores_h_sp, scores_h_po = scores_h inf = inf.cpu().numpy() scores_sp = scores_sp.cpu().numpy() scores_po = scores_po.cpu().numpy() inf_h = inf_h.cpu().numpy() scores_h_sp = scores_h_sp.cpu().numpy() scores_h_po = scores_h_po.cpu().numpy() np.testing.assert_allclose(inf, inf_h) np.testing.assert_allclose(scores_sp, scores_h_sp) np.testing.assert_allclose(scores_po, scores_h_po) for i in range(xs.shape[0]): np.testing.assert_allclose(inf[i], scores_sp[i, xo[i]], rtol=1e-5, atol=1e-5) np.testing.assert_allclose(inf[i], scores_po[i, xs[i]], rtol=1e-5, atol=1e-5) np.testing.assert_allclose(inf_h[i], scores_h_sp[i, xo[i]], rtol=1e-5, atol=1e-5) np.testing.assert_allclose(inf_h[i], scores_h_po[i, xs[i]], rtol=1e-5, atol=1e-5)