def runTest(self): ufunc, nx, ny, nz, coeff_use, precision_float, use_cpu_core, split, tmax = self.args fields = Fields(nx, ny, nz, coeff_use, precision_float, use_cpu_core) core = Core(fields) strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz'] slice_xyz = [slice(None, None), slice(None, None), fields.slice_z] # allocations ns = fields.ns dtype = fields.dtype ehs = common_update.generate_random_ehs(nx, ny, nz, dtype, ufunc) fields.set_ehs(*ehs) ces, chs = common_update.generate_random_cs(coeff_use, nx, ny, nz, dtype) if 'e' in coeff_use: fields.set_ces(*ces) if 'h' in coeff_use: fields.set_chs(*chs) # update if ufunc == 'e': for tstep in xrange(0, tmax): fields.update_e() common_update.update_e(ehs, ces) fields.enqueue_barrier() for strf, eh in zip(strf_list, ehs)[:3]: norm = np.linalg.norm(eh - fields.get(strf)[slice_xyz]) max_diff = np.abs(eh - fields.get(strf)[slice_xyz]).max() self.assertEqual(norm, 0, '%s, %s, %g, %g' % (self.args, strf, norm, max_diff) ) if fields.pad != 0: if strf == 'ez': norm2 = np.linalg.norm(fields.get(strf)[:,:,-fields.pad:]) else: norm2 = np.linalg.norm(fields.get(strf)[:,:,-fields.pad-1:]) self.assertEqual(norm2, 0, '%s, %s, %g, padding' % (self.args, strf, norm2) ) elif ufunc == 'h': for tstep in xrange(0, tmax): fields.update_h() common_update.update_h(ehs, chs) fields.enqueue_barrier() for strf, eh in zip(strf_list, ehs)[3:]: norm = np.linalg.norm(eh - fields.get(strf)[slice_xyz]) max_diff = np.abs(eh - fields.get(strf)[slice_xyz]).max() self.assertEqual(norm, 0, '%s, %s, %g, %g' % \ (self.args, strf, norm, max_diff) ) if fields.pad != 0: if strf == 'hz': norm2 = np.linalg.norm(fields.get(strf)[:,:,-fields.pad:]) else: norm2 = np.linalg.norm(fields.get(strf)[:,:,-fields.pad:]) self.assertEqual(norm2, 0, '%s, %s, %g, padding' % (self.args, strf, norm2) )
def runTest(self): nx, ny, nz, str_f, pt0, pt1, is_array = self.args slice_xyz = common.slice_index_two_points(pt0, pt1) str_fs = common.convert_to_tuple(str_f) # instance fields = Fields(nx, ny, nz, '', 'single') setf = SetFields(fields, str_f, pt0, pt1, is_array) # generate random source if is_array: shape = common.shape_two_points(pt0, pt1, len(str_fs)) value = np.random.rand(*shape).astype(fields.dtype) split_value = np.split(value, len(str_fs)) split_value_dict = dict( zip(str_fs, split_value) ) else: value = np.random.ranf() # host allocations ehs = [np.zeros(fields.ns, dtype=fields.dtype) for i in range(6)] eh_dict = dict( zip(['ex', 'ey', 'ez', 'hx', 'hy', 'hz'], ehs) ) # verify for str_f in str_fs: if is_array: eh_dict[str_f][slice_xyz] = split_value_dict[str_f] else: eh_dict[str_f][slice_xyz] = value setf.set_fields(value) fields.enqueue_barrier() for str_f in str_fs: original = eh_dict[str_f] copy = fields.get(str_f)[:,:,fields.slice_z] norm = np.linalg.norm(original - copy) self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
def runTest(self): nx, ny, nz, str_f, pt0, pt1, is_array = self.args slice_xyz = common.slice_index_two_points(pt0, pt1) str_fs = common.convert_to_tuple(str_f) # instance fields = Fields(nx, ny, nz, '', 'single') setf = SetFields(fields, str_f, pt0, pt1, is_array) # generate random source if is_array: shape = common.shape_two_points(pt0, pt1, len(str_fs)) value = np.random.rand(*shape).astype(fields.dtype) split_value = np.split(value, len(str_fs)) split_value_dict = dict(zip(str_fs, split_value)) else: value = np.random.ranf() # host allocations ehs = [np.zeros(fields.ns, dtype=fields.dtype) for i in range(6)] eh_dict = dict(zip(['ex', 'ey', 'ez', 'hx', 'hy', 'hz'], ehs)) # verify for str_f in str_fs: if is_array: eh_dict[str_f][slice_xyz] = split_value_dict[str_f] else: eh_dict[str_f][slice_xyz] = value setf.set_fields(value) fields.enqueue_barrier() for str_f in str_fs: original = eh_dict[str_f] copy = fields.get(str_f)[:, :, fields.slice_z] norm = np.linalg.norm(original - copy) self.assertEqual(norm, 0, '%s, %g' % (self.args, norm))
def runTest(self): ufunc, nx, ny, nz, coeff_use, precision_float, use_cpu_core, split, tmax = self.args fields = Fields(nx, ny, nz, coeff_use, precision_float, use_cpu_core) core = Core(fields) strf_list = ['ex', 'ey', 'ez', 'hx', 'hy', 'hz'] slice_xyz = [slice(None, None), slice(None, None), fields.slice_z] # allocations ns = fields.ns dtype = fields.dtype ehs = common_update.generate_random_ehs(nx, ny, nz, dtype, ufunc) fields.set_ehs(*ehs) ces, chs = common_update.generate_random_cs(coeff_use, nx, ny, nz, dtype) if 'e' in coeff_use: fields.set_ces(*ces) if 'h' in coeff_use: fields.set_chs(*chs) # update if ufunc == 'e': for tstep in xrange(0, tmax): fields.update_e() common_update.update_e(ehs, ces) fields.enqueue_barrier() for strf, eh in zip(strf_list, ehs)[:3]: norm = np.linalg.norm(eh - fields.get(strf)[slice_xyz]) max_diff = np.abs(eh - fields.get(strf)[slice_xyz]).max() self.assertEqual( norm, 0, '%s, %s, %g, %g' % (self.args, strf, norm, max_diff)) if fields.pad != 0: if strf == 'ez': norm2 = np.linalg.norm( fields.get(strf)[:, :, -fields.pad:]) else: norm2 = np.linalg.norm( fields.get(strf)[:, :, -fields.pad - 1:]) self.assertEqual( norm2, 0, '%s, %s, %g, padding' % (self.args, strf, norm2)) elif ufunc == 'h': for tstep in xrange(0, tmax): fields.update_h() common_update.update_h(ehs, chs) fields.enqueue_barrier() for strf, eh in zip(strf_list, ehs)[3:]: norm = np.linalg.norm(eh - fields.get(strf)[slice_xyz]) max_diff = np.abs(eh - fields.get(strf)[slice_xyz]).max() self.assertEqual(norm, 0, '%s, %s, %g, %g' % \ (self.args, strf, norm, max_diff) ) if fields.pad != 0: if strf == 'hz': norm2 = np.linalg.norm( fields.get(strf)[:, :, -fields.pad:]) else: norm2 = np.linalg.norm( fields.get(strf)[:, :, -fields.pad:]) self.assertEqual( norm2, 0, '%s, %s, %g, padding' % (self.args, strf, norm2))
# z-axis nx, ny, nz = 180, 160, 2 fields = Fields(QueueTask(), nx, ny, nz) Core(fields) Pbc(fields, 'xyz') IncidentDirect(fields, 'ey', (20, 0, 0), (20, -1, -1), tfunc) IncidentDirect(fields, 'ex', (0, 20, 0), (-1, 20, -1), tfunc) for tstep in xrange(1, tmax + 1): fields.update_e() fields.update_h() fields.enqueue_barrier() ax1 = fig.add_subplot(2, 3, 1) ax1.imshow(fields.get('ey')[:, :, nz / 2].T, vmin=-1.1, vmax=1.1) ax1.set_title('%s, ey[20,:,:]' % repr(fields.ns)) ax1.set_xlabel('x') ax1.set_ylabel('y') ax2 = fig.add_subplot(2, 3, 4) ax2.imshow(fields.get('ex')[:, :, nz / 2].T, vmin=-1.1, vmax=1.1) ax2.set_title('%s, ex[:,20,:]' % repr(fields.ns)) ax2.set_xlabel('x') ax2.set_ylabel('y') # y-axis nx, ny, nz = 180, 2, 160 fields = Fields(QueueTask(), nx, ny, nz) Core(fields) Pbc(fields, 'xyz')
# z-axis nx, ny, nz = 180, 160, 2 fields = Fields(nx, ny, nz) Core(fields) Pbc(fields, 'xyz') IncidentDirect(fields, 'ey', (20, 0, 0), (20, ny-1, nz-1), tfunc) IncidentDirect(fields, 'ex', (0, 20, 0), (nx-1, 20, nz-1), tfunc) for tstep in xrange(1, tmax+1): fields.update_e() fields.update_h() fields.enqueue_barrier() ax1 = fig.add_subplot(2, 3, 1) ax1.imshow(fields.get('ey')[:,:,nz/2].T, vmin=-1.1, vmax=1.1) ax1.set_title('%s, ey[20,:,:]' % repr(fields.ns)) ax1.set_xlabel('x') ax1.set_ylabel('y') ax2 = fig.add_subplot(2, 3, 4) ax2.imshow(fields.get('ex')[:,:,nz/2].T, vmin=-1.1, vmax=1.1) ax2.set_title('%s, ex[:,20,:]' % repr(fields.ns)) ax2.set_xlabel('x') ax2.set_ylabel('y') # y-axis nx, ny, nz = 180, 2, 160 fields = Fields(nx, ny, nz) Core(fields) Pbc(fields, 'xyz')