Exemple #1
0
def filterNaN(instr, datacol, outfile, logfile, verbose):

    status = 0
    try:
        nanclean = instr[1].header['NANCLEAN']
    except:
        naxis2 = 0
        for i in range(len(instr[1].columns.names)):
            if 'time' in instr[1].columns.names[i].lower():
                timecol = instr[1].columns.names[i]
        try:
            instr[1].data.field(datacol)
        except:
            msg = 'ERROR -- KEPIO.FILTERNAN: cannot find column ' + datacol + ' in the infile'
            status = kepmsg.err(logfile, msg, verbose)

        if status == 0:
            try:
                for i in range(len(instr[1].data.field(0))):
                    if str(instr[1].data.field(timecol)[i]) != '-inf' and \
                            str(instr[1].data.field(datacol)[i]) != '-inf':
                        instr[1].data[naxis2] = instr[1].data[i]
                        naxis2 += 1
                instr[1].data = instr[1].data[:naxis2]
                comment = 'NaN cadences removed from data'
                status = kepkey.new('NANCLEAN', True, comment, instr[1],
                                    outfile, logfile, verbose)
            except:
                msg = 'ERROR -- KEPIO.FILTERNAN: Failed to filter NaNs from ' + outfile
                status = kepmsg.err(logfile, msg, verbose)

    return instr, status
Exemple #2
0
def filterNaN(instr,datacol,outfile,logfile,verbose):

    status = 0
    try:
        nanclean = instr[1].header['NANCLEAN']
    except:
        naxis2 = 0
        for i in range(len(instr[1].columns.names)):
            if 'time' in instr[1].columns.names[i].lower():
                timecol = instr[1].columns.names[i]
        try:
            instr[1].data.field(datacol)
        except:
            msg = 'ERROR -- KEPIO.FILTERNAN: cannot find column ' + datacol + ' in the infile'
            status = kepmsg.err(logfile,msg,verbose)

        if status == 0:
            try:
                for i in range(len(instr[1].data.field(0))):
                    if str(instr[1].data.field(timecol)[i]) != '-inf' and \
                            str(instr[1].data.field(datacol)[i]) != '-inf':
                        instr[1].data[naxis2] = instr[1].data[i]
                        naxis2 += 1
                instr[1].data = instr[1].data[:naxis2]
                comment = 'NaN cadences removed from data'
                status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)
            except:
                msg = 'ERROR -- KEPIO.FILTERNAN: Failed to filter NaNs from '+ outfile
                status = kepmsg.err(logfile,msg,verbose)

    return instr, status
Exemple #3
0
def kepstddev(infile,outfile,datacol,timescale,clobber,verbose,logfile,status,cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 44
    ticksize = 36
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPSTDDEV -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'timescale='+str(timescale)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPSTDDEV started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
        message = 'ERROR -- KEPSTDDEV: ' + outfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        work1 = numpy.array([table.field('time'), table.field(datacol)])
        work1 = numpy.rot90(work1,3)
        work1 = work1[~numpy.isnan(work1).any(1)]            
 
# read table columns

    if status == 0:
        intime = work1[:,1] + bjdref
        indata = work1[:,0]

# calculate STDDEV in units of ppm

    if status == 0:
        stddev = running_frac_std(intime,indata,timescale/24) * 1.0e6
        astddev = numpy.std(indata) * 1.0e6
        cdpp = stddev / sqrt(timescale * 3600.0 / cadence)

# filter cdpp

    if status == 0:
        for i in range(len(cdpp)):
            if cdpp[i] > median(cdpp) * 10.0: cdpp[i] = cdpp[i-1]

# calculate median STDDEV

    if status == 0:
        medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:])
#        print '\nMedian %.1fhr standard deviation = %d ppm' % (timescale, median(stddev[:]))
        print('\nStandard deviation = %d ppm' % astddev)

# calculate median STDDEV

    if status == 0:
        medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:])
        print('Median %.1fhr CDPP = %d ppm' % (timescale, median(cdpp[:])))

# calculate RMS STDDEV

    if status == 0:
        rms, status = kepstat.rms(cdpp,zeros(len(stddev)),logfile,verbose)
        rmscdpp = ones((len(cdpp)),dtype='float32') * rms
        print('   RMS %.1fhr CDPP = %d ppm\n' % (timescale, rms))

# clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

# clean up y-axis units

    if status == 0:
        pout = copy(cdpp)
        nrm = math.ceil(math.log10(median(cdpp))) - 1.0
#	pout = pout / 10**nrm
#	ylab = '%.1fhr $\sigma$ (10$^%d$ ppm)' % (timescale,nrm)
	ylab = '%.1fhr $\sigma$ (ppm)' % timescale

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = pout.min()
	ymax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot style

    if status == 0:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': 36,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': 32,
                      'ytick.labelsize': 36}
            pylab.rcParams.update(params)
        except:
            pass

# define size of plot on monitor screen

	pylab.figure(figsize=[xsize,ysize])

# delete any fossil plots in the matplotlib window

        pylab.clf()

# position first axes inside the plotting window

        ax = pylab.axes([0.07,0.15,0.92,0.83])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        ax.yaxis.set_major_locator(MaxNLocator(5))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        pylab.setp(labels, 'rotation', 90,fontsize=36)

# plot flux vs time

        ltime = array([],dtype='float64')
        ldata = array([],dtype='float32')
        dt = 0
        work1 = 2.0 * cadence / 86400
        for i in range(1,len(ptime)-1):
            dt = ptime[i] - ptime[i-1]
            if dt < work1:
                ltime = append(ltime,ptime[i])
                ldata = append(ldata,pout[i])
            else:
                pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0)
                ltime = array([],dtype='float64')
                ldata = array([],dtype='float32')
        pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0)

# plot the fill color below data time series, with no data gaps

	pylab.fill(ptime,pout,fc='#ffff00',linewidth=0.0,alpha=0.2)

# plot median CDPP

#        pylab.plot(intime - intime0,medcdpp / 10**nrm,color='r',linestyle='-',linewidth=2.0)
#        pylab.plot(intime - intime0,medcdpp,color='r',linestyle='-',linewidth=2.0)

# plot RMS CDPP

#        pylab.plot(intime - intime0,rmscdpp / 10**nrm,color='r',linestyle='--',linewidth=2.0)

# define plot x and y limits

	pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01)
	if ymin - yr * 0.01 <= 0.0:
            pylab.ylim(1.0e-10, ymax + yr * 0.01)
	else:
            pylab.ylim(ymin - yr * 0.01, ymax + yr * 0.01)
           
# plot labels

	pylab.xlabel(xlab, {'color' : 'k'})
        pylab.ylabel(ylab, {'color' : 'k'})

# make grid on plot

	pylab.grid()

# render plot

    if status == 0:
        if cmdLine: 
            pylab.show(block=True)
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()

# add NaNs back into data

    if status == 0:
        n = 0
        work1 = array([],dtype='float32')
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)
        for i in range(len(table.field(0))):
            if isfinite(table.field('time')[i]) and isfinite(table.field(datacol)[i]):
                work1 = append(work1,cdpp[n])
                n += 1
            else:
                work1 = append(work1,nan)

# write output file
                
    if status == 0:
        status = kepkey.new('MCDPP%d' % (timescale * 10.0),medcdpp[0],
                            'Median %.1fhr CDPP (ppm)' % timescale,
                            instr[1],outfile,logfile,verbose)
        status = kepkey.new('RCDPP%d' % (timescale * 10.0),rmscdpp[0],
                            'RMS %.1fhr CDPP (ppm)' % timescale,
                            instr[1],outfile,logfile,verbose)
        colname = 'CDPP_%d' % (timescale * 10)
	col1 = pyfits.Column(name=colname,format='E13.7',array=work1)
	cols = instr[1].data.columns + col1
	instr[1] = pyfits.new_table(cols,header=instr[1].header)
	instr.writeto(outfile)
	
# comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# close FITS

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

# end time

    if (status == 0):
	    message = 'KEPSTDDEV completed at'
    else:
	    message = '\nKEPSTDDEV aborted at'
    kepmsg.clock(message,logfile,verbose)
Exemple #4
0
def kepregr(infile, outfile, datacol, kmethod, kneighb, plot, plotlab, clobber,
            verbose, logfile, status):
    """
    Perform a k-nearest neighbor regression analysis.
    """

    ## startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 6
    lcolor = '#47AE10'
    lwidth = 1.0
    fcolor = '#9AFF9A'
    falpha = 0.3

    ## log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPREGR -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'datacol=' + str(datacol) + ' '
    call += 'kmethod=' + str(kmethod) + ' '
    call += 'kneighb=' + str(kneighb) + ' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot=' + plotit + ' '
    call += 'plotlab=' + str(plotlab) + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    ## start time

    kepmsg.clock('KEPREGR started at', logfile, verbose)

    ## test log file

    logfile = kepmsg.test(logfile)

    ## clobber output file

    if clobber: status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = 'ERROR -- KEPREGR: ' + outfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile, message, verbose)

## open input file

    if status == 0:
        instr, status = kepio.openfits(infile, 'readonly', logfile, verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(
            instr, infile, logfile, verbose, status)
        if cadence == 0.0:
            tstart, tstop, ncad, cadence, status = kepio.cadence(
                instr, infile, logfile, verbose, status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

## fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr, file, logfile, verbose)

## read table structure

    if status == 0:
        table, status = kepio.readfitstab(infile, instr[1], logfile, verbose)

# read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile, table, logfile, verbose)
    if status == 0:
        flux, status = kepio.readfitscol(infile, instr[1].data, datacol,
                                         logfile, verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            for i in range(len(table.field(0))):
                if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i])
                        and flux[i] != 0.0):
                    table[naxis2] = table[i]
                    naxis2 += 1
            instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN', True, comment, instr[1], outfile,
                                logfile, verbose)

## read table columns

    if status == 0:
        try:
            intime = instr[1].data.field('barytime')
        except:
            intime, status = kepio.readfitscol(infile, instr[1].data, 'time',
                                               logfile, verbose)
        indata, status = kepio.readfitscol(infile, instr[1].data, datacol,
                                           logfile, verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

    if status == 0:
        outdata = knn_predict(intime, indata, kmethod, kneighb)

## comment keyword in output file

    if status == 0:
        status = kepkey.history(call, instr[0], outfile, logfile, verbose)

## clean up x-axis unit

    if status == 0:
        intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6: intime0 += 2.4e6
        ptime = intime - intime0
        # print ptime,intime,intime0
        xlab = 'BJD $-$ %d' % intime0

## clean up y-axis units

    if status == 0:
        pout = indata * 1.0
        pout2 = outdata * 1.0
        nrm = len(str(int(numpy.nanmax(pout)))) - 1
        pout = pout / 10**nrm
        pout2 = pout2 / 10**nrm
        ylab = '10$^%d$ %s' % (nrm, plotlab)

        ## data limits

        xmin = numpy.nanmin(ptime)
        xmax = numpy.nanmax(ptime)
        ymin = numpy.min(pout)
        ymax = numpy.nanmax(pout)
        xr = xmax - xmin
        yr = ymax - ymin
        ptime = insert(ptime, [0], [ptime[0]])
        ptime = append(ptime, [ptime[-1]])
        pout = insert(pout, [0], [0.0])
        pout = append(pout, 0.0)
        pout2 = insert(pout2, [0], [0.0])
        pout2 = append(pout2, 0.0)

## plot light curve

    if status == 0 and plot:
        try:
            params = {
                'backend': 'png',
                'axes.linewidth': 2.5,
                'axes.labelsize': labelsize,
                'axes.font': 'sans-serif',
                'axes.fontweight': 'bold',
                'text.fontsize': 12,
                'legend.fontsize': 12,
                'xtick.labelsize': ticksize,
                'ytick.labelsize': ticksize
            }
            rcParams.update(params)
        except:
            print('ERROR -- KEPREGR: install latex for scientific plotting')
            status = 1
    if status == 0 and plot:
        pylab.figure(1, figsize=[xsize, ysize])

        ## plot regression data

        ax = pylab.axes([0.06, 0.1, 0.93, 0.87])
        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        # pylab.plot(ptime,pout,color='#ff9900',linestyle='-',linewidth=lwidth)
        pylab.scatter(ptime, pout, color='#214CAE', s=5)
        fill(ptime, pout, color=fcolor, linewidth=0.0, alpha=falpha)
        pylab.plot(ptime[kneighb:-kneighb],
                   pout2[kneighb:-kneighb],
                   color=lcolor,
                   linestyle='-',
                   linewidth=lwidth * 2.0)
        xlabel(xlab, {'color': 'k'})
        ylabel(ylab, {'color': 'k'})
        xlim(xmin - xr * 0.01, xmax + xr * 0.01)
        if ymin >= 0.0:
            ylim(ymin - yr * 0.01, ymax + yr * 0.01)
        else:
            ylim(1.0e-10, ymax + yr * 0.01)
        pylab.grid()
        pylab.draw()
        pylab.savefig(re.sub('\.\S+', '.png', outfile), dpi=100)

## write output file

    if status == 0:
        for i in range(len(outdata)):
            instr[1].data.field(datacol)[i] = outdata[i]
        instr.writeto(outfile)

## close input file

    if status == 0:
        status = kepio.closefits(instr, logfile, verbose)

## end time

    if (status == 0):
        message = 'KEPREGR completed at'
    else:
        message = '\nKEPREGR aborted at'
    kepmsg.clock(message, logfile, verbose)
Exemple #5
0
def kepdip(infile,outfile,datacol,dmethod,kneighb,hstd,plot,plotlab,
              clobber,verbose,logfile,status): 
    """
    Perform a k-nearest neighbor regression analysis.
    """

## startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#9AFF9A'
    falpha = 0.3

## log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPDIP -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'dmethod='+dmethod+' '
    call += 'hstd='+str(hstd)+' '
    call += 'kneighb='+str(kneighb)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    call += 'plotlab='+str(plotlab)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

## start time

    kepmsg.clock('KEPDIP started at',logfile,verbose)

## test log file

    logfile = kepmsg.test(logfile)

## clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPDIP: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

## open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
        if cadence == 0.0: 
            tstart, tstop, ncad, cadence, status = kepio.cadence(instr,infile,logfile,verbose,status) 
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

## fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

## read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile,table,logfile,verbose)
    if status == 0:
        flux, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            for i in range(len(table.field(0))):
                if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0):
                    table[naxis2] = table[i]
                    naxis2 += 1
            instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)

## read table columns

    if status == 0:
	try:
            intime = instr[1].data.field('barytime')
	except:
            intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose)
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

## smooth data

    if status == 0:
        # outdata = knn_predict(intime, indata, kmethod, kneighb)
	outdata_t, outdata_l, outdata_fmt = _find_dips(intime, indata, dmethod, kneighb, hstd)

## comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

## clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6: intime0 += 2.4e6
	ptime = intime - intime0
	ptime2 = outdata_t - intime0
        # print ptime,intime,intime0
	xlab = 'BJD $-$ %d' % intime0

## clean up y-axis units

    if status == 0:
        pout = indata * 1.0
        pout2 = outdata_l * 1.0 
	nrm = len(str(int(numpy.nanmax(pout))))-1
	pout = pout / 10**nrm
	pout2 = pout2 / 10**nrm
	ylab = '10$^%d$ %s' % (nrm, plotlab)

## data limits

	xmin = numpy.nanmin(ptime)
	xmax = numpy.nanmax(ptime)
	ymin = numpy.min(pout)
	ymax = numpy.nanmax(pout)
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)
	if (len(ptime2) > 0):
	        ptime2 = insert(ptime2,[0],[ptime2[0]]) 
        	ptime2 = append(ptime2,[ptime2[-1]])
	        pout2 = insert(pout2,[0],[0.0]) 
        	pout2 = append(pout2,0.0)

## plot light curve

    if status == 0 and plot:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            print('ERROR -- KEPDIP: install latex for scientific plotting')
            status = 1
    if status == 0 and plot:
        pylab.figure(1,figsize=[xsize,ysize])

## plot regression data

        ax = pylab.axes([0.06,0.1,0.93,0.87])
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
	pylab.scatter(ptime, pout, color='#214CAE', s=2)

	if (len(ptime2) > 0):
	        pylab.scatter(ptime2, pout2, color='#47AE10', s=35, marker='o', linewidths=2, alpha=0.4)
        xlabel(xlab, {'color' : 'k'})
        ylabel(ylab, {'color' : 'k'})
        xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)
        pylab.grid()
        pylab.draw()
        pylab.savefig(re.sub('\.\S+','.png',outfile),dpi=100)

## write output file

    if status == 0:
        for i in range(len(outdata_fmt)):
            instr[1].data.field(datacol)[i] = outdata_fmt[i]
        instr.writeto(outfile)
    
## close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPDIP completed at'
    else:
	    message = '\nKEPDIP aborted at'
    kepmsg.clock(message,logfile,verbose)
Exemple #6
0
def kepfilter(infile,outfile,datacol,function,cutoff,passband,plot,plotlab,
              clobber,verbose,logfile,status,cmdLine=False): 

## startup parameters

    status = 0
    numpy.seterr(all="ignore") 
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

## log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPFILTER -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'function='+str(function)+' '
    call += 'cutoff='+str(cutoff)+' '
    call += 'passband='+str(passband)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    call += 'plotlab='+str(plotlab)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

## start time

    kepmsg.clock('KEPFILTER started at',logfile,verbose)

## test log file

    logfile = kepmsg.test(logfile)

## clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPFILTER: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

## open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

## fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

## read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile,table,logfile,verbose)
        flux, status = kepio.readsapcol(infile,table,logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            for i in range(len(table.field(0))):
                if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0):
                    table[naxis2] = table[i]
                    naxis2 += 1
            instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)

## read table columns

    if status == 0:
        intime, status = kepio.readtimecol(infile,instr[1].data,logfile,verbose)
    if status == 0:
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

## define data sampling

    if status == 0:
        tr = 1.0 / (cadence / 86400)
        timescale = 1.0 / (cutoff / tr)

## define convolution function

    if status == 0:
        if function == 'boxcar':
            filtfunc = numpy.ones(numpy.ceil(timescale))
        elif function == 'gauss':
            timescale /= 2
            dx = numpy.ceil(timescale * 10 + 1)
            filtfunc = kepfunc.gauss()
            filtfunc = filtfunc([1.0,dx/2-1.0,timescale],linspace(0,dx-1,dx))
        elif function == 'sinc':
            dx = numpy.ceil(timescale * 12 + 1)
            fx = linspace(0,dx-1,dx)
            fx = fx - dx / 2 + 0.5
            fx /= timescale
            filtfunc = numpy.sinc(fx)
        filtfunc /= numpy.sum(filtfunc)

## pad time series at both ends with noise model

    if status == 0:
        ave, sigma  = kepstat.stdev(indata[:len(filtfunc)])
        padded = append(kepstat.randarray(np.ones(len(filtfunc)) * ave,
                                          np.ones(len(filtfunc)) * sigma), indata)
        ave, sigma  = kepstat.stdev(indata[-len(filtfunc):])
        padded = append(padded, kepstat.randarray(np.ones(len(filtfunc)) * ave,
                                                  np.ones(len(filtfunc)) * sigma))

## convolve data

    if status == 0:
        convolved = convolve(padded,filtfunc,'same')

## remove padding from the output array

    if status == 0:
        if function == 'boxcar':
            outdata = convolved[len(filtfunc):-len(filtfunc)]
        else:
            outdata = convolved[len(filtfunc):-len(filtfunc)]
            

## subtract low frequencies

    if status == 0 and passband == 'high':
        outmedian = median(outdata)
        outdata = indata - outdata + outmedian

## comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

## clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6: intime0 += 2.4e6
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

## clean up y-axis units

    if status == 0:
        pout = indata * 1.0
        pout2 = outdata * 1.0
	nrm = len(str(int(numpy.nanmax(pout))))-1
	pout = pout / 10**nrm
	pout2 = pout2 / 10**nrm
	ylab = '10$^%d$ %s' % (nrm, plotlab)

## data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = numpy.nanmin(pout)
	ymax = numpy.nanmax(pout)
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)
        pout2 = insert(pout2,[0],[0.0]) 
        pout2 = append(pout2,0.0)

## plot light curve

    if status == 0 and plot:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            print 'ERROR -- KEPFILTER: install latex for scientific plotting'
            status = 1
    if status == 0 and plot:
        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()

## plot filtered data

        ax = pylab.axes([0.06,0.1,0.93,0.87])
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)
        pylab.plot(ptime,pout,color='#ff9900',linestyle='-',linewidth=lwidth)
        fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
        if passband == 'low':
            pylab.plot(ptime[1:-1],pout2[1:-1],color=lcolor,linestyle='-',linewidth=lwidth)
        else:
            pylab.plot(ptime,pout2,color=lcolor,linestyle='-',linewidth=lwidth)
            fill(ptime,pout2,color=lcolor,linewidth=0.0,alpha=falpha)
	xlabel(xlab, {'color' : 'k'})
	ylabel(ylab, {'color' : 'k'})
	xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)
        pylab.grid()
        
# render plot

        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
## write output file

    if status == 0:
        for i in range(len(outdata)):
            instr[1].data.field(datacol)[i] = outdata[i]
        instr.writeto(outfile)
    
## close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPFILTER completed at'
    else:
	    message = '\nKEPFILTER aborted at'
    kepmsg.clock(message,logfile,verbose)
Exemple #7
0
def kepsmooth(
    infile, outfile, datacol, function, fscale, plot, plotlab, clobber, verbose, logfile, status, cmdLine=False
):

    ## startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 18
    ysize = 6
    lcolor = "#0000ff"
    lwidth = 1.0
    fcolor = "#ffff00"
    falpha = 0.2

    ## log the call

    hashline = "----------------------------------------------------------------------------"
    kepmsg.log(logfile, hashline, verbose)
    call = "KEPSMOOTH -- "
    call += "infile=" + infile + " "
    call += "outfile=" + outfile + " "
    call += "datacol=" + str(datacol) + " "
    call += "function=" + str(function) + " "
    call += "fscale=" + str(fscale) + " "
    plotit = "n"
    if plot:
        plotit = "y"
    call += "plot=" + plotit + " "
    call += "plotlab=" + str(plotlab) + " "
    overwrite = "n"
    if clobber:
        overwrite = "y"
    call += "clobber=" + overwrite + " "
    chatter = "n"
    if verbose:
        chatter = "y"
    call += "verbose=" + chatter + " "
    call += "logfile=" + logfile
    kepmsg.log(logfile, call + "\n", verbose)

    ## start time

    kepmsg.clock("KEPSMOOTH started at", logfile, verbose)

    ## test log file

    logfile = kepmsg.test(logfile)

    ## clobber output file

    if clobber:
        status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = "ERROR -- KEPSMOOTH: " + outfile + " exists. Use clobber=yes"
        status = kepmsg.err(logfile, message, verbose)

    ## open input file

    if status == 0:
        instr, status = kepio.openfits(infile, "readonly", logfile, verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr, infile, logfile, verbose, status)
        if cadence == 0.0:
            tstart, tstop, ncad, cadence, status = kepio.cadence(instr, infile, logfile, verbose, status)
    if status == 0:
        try:
            work = instr[0].header["FILEVER"]
            cadenom = 1.0
        except:
            cadenom = cadence

    ## fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr, file, logfile, verbose)

    ## read table structure

    if status == 0:
        table, status = kepio.readfitstab(infile, instr[1], logfile, verbose)

    # read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile, table, logfile, verbose)
    if status == 0:
        flux, status = kepio.readfitscol(infile, instr[1].data, datacol, logfile, verbose)

    # filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header["NANCLEAN"]
        except:
            naxis2 = 0
            for i in range(len(table.field(0))):
                if numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0:
                    table[naxis2] = table[i]
                    naxis2 += 1
            instr[1].data = table[:naxis2]
            comment = "NaN cadences removed from data"
            status = kepkey.new("NANCLEAN", True, comment, instr[1], outfile, logfile, verbose)

    ## read table columns

    if status == 0:
        try:
            intime = instr[1].data.field("barytime")
        except:
            intime, status = kepio.readfitscol(infile, instr[1].data, "time", logfile, verbose)
        indata, status = kepio.readfitscol(infile, instr[1].data, datacol, logfile, verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

    ## smooth data

    if status == 0:
        outdata = kepfunc.smooth(indata, fscale / (cadence / 86400), function)

    ## comment keyword in output file

    if status == 0:
        status = kepkey.history(call, instr[0], outfile, logfile, verbose)

    ## clean up x-axis unit

    if status == 0:
        intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6:
            intime0 += 2.4e6
        ptime = intime - intime0
        xlab = "BJD $-$ %d" % intime0

    ## clean up y-axis units

    if status == 0:
        pout = indata * 1.0
        pout2 = outdata * 1.0
        nrm = len(str(int(numpy.nanmax(pout)))) - 1
        pout = pout / 10 ** nrm
        pout2 = pout2 / 10 ** nrm
        ylab = "10$^%d$ %s" % (nrm, re.sub("_", "-", plotlab))

        ## data limits

        xmin = numpy.nanmin(ptime)
        xmax = numpy.nanmax(ptime)
        ymin = numpy.min(pout)
        ymax = numpy.nanmax(pout)
        xr = xmax - xmin
        yr = ymax - ymin
        ptime = insert(ptime, [0], [ptime[0]])
        ptime = append(ptime, [ptime[-1]])
        pout = insert(pout, [0], [0.0])
        pout = append(pout, 0.0)
        pout2 = insert(pout2, [0], [0.0])
        pout2 = append(pout2, 0.0)

    ## plot light curve

    if status == 0 and plot:
        try:
            params = {
                "backend": "png",
                "axes.linewidth": 2.5,
                "axes.labelsize": labelsize,
                "axes.font": "sans-serif",
                "axes.fontweight": "bold",
                "text.fontsize": 12,
                "legend.fontsize": 12,
                "xtick.labelsize": ticksize,
                "ytick.labelsize": ticksize,
            }
            rcParams.update(params)
        except:
            print "ERROR -- KEPSMOOTH: install latex for scientific plotting"
            status = 1
    if status == 0 and plot:
        pylab.figure(1, figsize=[xsize, ysize])

        # delete any fossil plots in the matplotlib window

        pylab.clf()

        # position axes inside the plotting window

        ax = pylab.subplot(111)
        pylab.subplots_adjust(0.06, 0.1, 0.93, 0.88)

        # force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

        # rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, "rotation", 90)

        pylab.plot(ptime[1:-1], pout[1:-1], color="#ff9900", linestyle="-", linewidth=lwidth)
        fill(ptime, pout, color=fcolor, linewidth=0.0, alpha=falpha)
        pylab.plot(ptime, pout2, color=lcolor, linestyle="-", linewidth=lwidth * 4.0)
        pylab.xlabel(xlab, {"color": "k"})
        pylab.ylabel(ylab, {"color": "k"})
        xlim(xmin - xr * 0.01, xmax + xr * 0.01)
        if ymin >= 0.0:
            ylim(ymin - yr * 0.01, ymax + yr * 0.01)
        else:
            ylim(1.0e-10, ymax + yr * 0.01)
        pylab.grid()

    # render plot

    if cmdLine:
        pylab.show()
    else:
        pylab.ion()
        pylab.plot([])
        pylab.ioff()

    ## write output file

    if status == 0:
        for i in range(len(outdata)):
            instr[1].data.field(datacol)[i] = outdata[i]
        instr.writeto(outfile)

    ## close input file

    if status == 0:
        status = kepio.closefits(instr, logfile, verbose)

    ## end time

    if status == 0:
        message = "KEPSMOOTH completed at"
    else:
        message = "\nKEPSMOOTH aborted at"
    kepmsg.clock(message, logfile, verbose)
Exemple #8
0
def kepoutlier(infile,outfile,datacol,nsig,stepsize,npoly,niter,
               operation,ranges,plot,plotfit,clobber,verbose,logfile,status, cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPOUTLIER -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'nsig='+str(nsig)+' '
    call += 'stepsize='+str(stepsize)+' '
    call += 'npoly='+str(npoly)+' '
    call += 'niter='+str(niter)+' '
    call += 'operation='+str(operation)+' '
    call += 'ranges='+str(ranges)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    plotf = 'n'
    if (plotfit): plotf = 'y'
    call += 'plotfit='+plotf+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPOUTLIER started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPOUTLIER: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            try:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('barytime')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            except:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('time')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)
 
# read table columns

    if status == 0:
	try:
            intime = instr[1].data.field('barytime') + 2.4e6
	except:
            intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose)
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

# time ranges for region to be corrected

    if status == 0:
        t1, t2, status = kepio.timeranges(ranges,logfile,verbose)
        cadencelis, status = kepstat.filterOnRange(intime,t1,t2)

# find limits of each time step

    if status == 0:
        tstep1 = []; tstep2 = []
        work = intime[0]
        while work < intime[-1]:
            tstep1.append(work)
            tstep2.append(array([work+stepsize,intime[-1]],dtype='float64').min())
            work += stepsize

# find cadence limits of each time step

    if status == 0:
        cstep1 = []; cstep2 = []
        work1 = 0; work2 = 0
        for i in range(len(intime)):
            if intime[i] >= intime[work1] and intime[i] < intime[work1] + stepsize:
                work2 = i
            else:
                cstep1.append(work1)
                cstep2.append(work2)
                work1 = i; work2 = i
        cstep1.append(work1)
        cstep2.append(work2)

        outdata = indata * 1.0

# comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

# clean up y-axis units

    if status == 0:
        pout = indata * 1.0
	nrm = len(str(int(pout.max())))-1
	pout = pout / 10**nrm
	ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = pout.min()
	ymax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot light curve

    if status == 0 and plot:
        plotLatex = True
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            plotLatex = False
    if status == 0 and plot:
        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()

# plot data

        ax = pylab.axes([0.06,0.1,0.93,0.87])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

        pylab.plot(ptime,pout,color=lcolor,linestyle='-',linewidth=lwidth)
        fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
	xlabel(xlab, {'color' : 'k'})
        if not plotLatex:
            ylab = '10**%d electrons/sec' % nrm
        ylabel(ylab, {'color' : 'k'})
        grid()

# loop over each time step, fit data, determine rms

    if status == 0:
        masterfit = indata * 0.0
        mastersigma = zeros(len(masterfit))
        functype = 'poly' + str(npoly)
        for i in range(len(cstep1)):
            pinit = [indata[cstep1[i]:cstep2[i]+1].mean()]
            if npoly > 0:
                for j in range(npoly):
                    pinit.append(0.0)
            pinit = array(pinit,dtype='float32')
            try:
                coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                    kepfit.lsqclip(functype,pinit,intime[cstep1[i]:cstep2[i]+1]-intime[cstep1[i]],
                                   indata[cstep1[i]:cstep2[i]+1],None,nsig,nsig,niter,logfile,
                                   verbose)
                for j in range(len(coeffs)):
                    masterfit[cstep1[i]:cstep2[i]+1] += coeffs[j] * \
                        (intime[cstep1[i]:cstep2[i]+1] - intime[cstep1[i]])**j
                for j in range(cstep1[i],cstep2[i]+1):
                    mastersigma[j] = sigma
                if plotfit:
                    pylab.plot(plotx+intime[cstep1[i]]-intime0,ploty / 10**nrm,
                               'g',lw='3')
            except:
                for j in range(cstep1[i],cstep2[i]+1):
                    masterfit[j] = indata[j]
                    mastersigma[j] = 1.0e10               
                message  = 'WARNING -- KEPOUTLIER: could not fit range '
                message += str(intime[cstep1[i]]) + '-' + str(intime[cstep2[i]])
                kepmsg.warn(None,message)

# reject outliers

    if status == 0:
        rejtime = []; rejdata = []; naxis2 = 0
        for i in range(len(masterfit)):
            if abs(indata[i] - masterfit[i]) > nsig * mastersigma[i] and i in cadencelis:
                rejtime.append(intime[i])
                rejdata.append(indata[i])
                if operation == 'replace':
                    [rnd] = kepstat.randarray([masterfit[i]],[mastersigma[i]])
                    table[naxis2] = table[i]
                    table.field(datacol)[naxis2] = rnd
                    naxis2 += 1
            else:
                table[naxis2] = table[i]
                naxis2 += 1
        instr[1].data = table[:naxis2]
        rejtime = array(rejtime,dtype='float64')
        rejdata = array(rejdata,dtype='float32')
        pylab.plot(rejtime-intime0,rejdata / 10**nrm,'ro')

# plot ranges

        xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)

# render plot

        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
# write output file

    if status == 0:
        instr.writeto(outfile)
    
# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPOUTLIER completed at'
    else:
	    message = '\nKEPOUTLIER aborted at'
    kepmsg.clock(message,logfile,verbose)
Exemple #9
0
def keppixseries(infile,outfile,plotfile,plottype,filter,function,cutoff,clobber,verbose,logfile,status, cmdLine=False): 

# input arguments

    status = 0
    seterr(all="ignore") 

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPPIXSERIES -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'plotfile='+plotfile+' '
    call += 'plottype='+plottype+' '
    filt = 'n'
    if (filter): filt = 'y'
    call += 'filter='+filt+ ' '
    call += 'function='+function+' '
    call += 'cutoff='+str(cutoff)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPPIXSERIES started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
        message = 'ERROR -- KEPPIXSERIES: ' + outfile + ' exists. Use --clobber'
        status = kepmsg.err(logfile,message,verbose)

# open TPF FITS file

    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \
            kepio.readTPF(infile,'TIME',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \
            kepio.readTPF(infile,'TIMECORR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \
            kepio.readTPF(infile,'CADENCENO',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \
            kepio.readTPF(infile,'FLUX',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \
            kepio.readTPF(infile,'FLUX_ERR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, qual, status = \
            kepio.readTPF(infile,'QUALITY',logfile,verbose)

# read mask defintion data from TPF file

    if status == 0:
        maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition(infile,logfile,verbose)

# print target data

    if status == 0:
        print ''
        print '      KepID:  %s' % kepid
        print ' RA (J2000):  %s' % ra
        print 'Dec (J2000): %s' % dec
        print '     KepMag:  %s' % kepmag
        print '   SkyGroup:    %2s' % skygroup
        print '     Season:    %2s' % str(season)
        print '    Channel:    %2s' % channel
        print '     Module:    %2s' % module
        print '     Output:     %1s' % output
        print ''

# how many quality = 0 rows?

    if status == 0:
        npts = 0
        nrows = len(fluxpixels)
        for i in range(nrows):
            if qual[i] == 0 and \
                    numpy.isfinite(barytime[i]) and \
                    numpy.isfinite(fluxpixels[i,ydim*xdim/2]):
                npts += 1
        time = empty((npts))
        timecorr = empty((npts))
        cadenceno = empty((npts))
        quality = empty((npts))
        pixseries = empty((ydim,xdim,npts))
        errseries = empty((ydim,xdim,npts))

# construct output light curves

    if status == 0:
        np = 0
        for i in range(ydim):
            for j in range(xdim):
                npts = 0
                for k in range(nrows):
                    if qual[k] == 0 and \
                    numpy.isfinite(barytime[k]) and \
                    numpy.isfinite(fluxpixels[k,ydim*xdim/2]):
                        time[npts] = barytime[k]
                        timecorr[npts] = tcorr[k]
                        cadenceno[npts] = cadno[k]
                        quality[npts] = qual[k]
                        pixseries[i,j,npts] = fluxpixels[k,np]
                        errseries[i,j,npts] = errpixels[k,np]
                        npts += 1
                np += 1

# define data sampling

    if status == 0 and filter:
        tpf, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0 and filter:
        cadence, status = kepkey.cadence(tpf[1],infile,logfile,verbose)     
        tr = 1.0 / (cadence / 86400)
        timescale = 1.0 / (cutoff / tr)

# define convolution function

    if status == 0 and filter:
        if function == 'boxcar':
            filtfunc = numpy.ones(numpy.ceil(timescale))
        elif function == 'gauss':
            timescale /= 2
            dx = numpy.ceil(timescale * 10 + 1)
            filtfunc = kepfunc.gauss()
            filtfunc = filtfunc([1.0,dx/2-1.0,timescale],linspace(0,dx-1,dx))
        elif function == 'sinc':
            dx = numpy.ceil(timescale * 12 + 1)
            fx = linspace(0,dx-1,dx)
            fx = fx - dx / 2 + 0.5
            fx /= timescale
            filtfunc = numpy.sinc(fx)
        filtfunc /= numpy.sum(filtfunc)

# pad time series at both ends with noise model

    if status == 0 and filter:
        for i in range(ydim):
            for j in range(xdim):
                ave, sigma  = kepstat.stdev(pixseries[i,j,:len(filtfunc)])
                padded = numpy.append(kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                            numpy.ones(len(filtfunc)) * sigma), pixseries[i,j,:])
                ave, sigma  = kepstat.stdev(pixseries[i,j,-len(filtfunc):])
                padded = numpy.append(padded, kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                                    numpy.ones(len(filtfunc)) * sigma))

# convolve data

                if status == 0:
                    convolved = convolve(padded,filtfunc,'same')

# remove padding from the output array

                if status == 0:
                    outdata = convolved[len(filtfunc):-len(filtfunc)]
            
# subtract low frequencies

                if status == 0:
                    outmedian = median(outdata)
                    pixseries[i,j,:] = pixseries[i,j,:] - outdata + outmedian

# construct output file

    if status == 0 and ydim*xdim < 1000:
        instruct, status = kepio.openfits(infile,'readonly',logfile,verbose)
        status = kepkey.history(call,instruct[0],outfile,logfile,verbose)
        hdulist = HDUList(instruct[0])
        cols = []
        cols.append(Column(name='TIME',format='D',unit='BJD - 2454833',disp='D12.7',array=time))
        cols.append(Column(name='TIMECORR',format='E',unit='d',disp='E13.6',array=timecorr))
        cols.append(Column(name='CADENCENO',format='J',disp='I10',array=cadenceno))
        cols.append(Column(name='QUALITY',format='J',array=quality))
        for i in range(ydim):
            for j in range(xdim):
                colname = 'COL%d_ROW%d' % (i+column,j+row)
                cols.append(Column(name=colname,format='E',disp='E13.6',array=pixseries[i,j,:]))
        hdu1 = new_table(ColDefs(cols))
        try:
            hdu1.header.update('INHERIT',True,'inherit the primary header')
        except:
            status = 0
        try:
            hdu1.header.update('EXTNAME','PIXELSERIES','name of extension')
        except:
            status = 0
        try:
            hdu1.header.update('EXTVER',instruct[1].header['EXTVER'],'extension version number (not format version)')
        except:
            status = 0
        try:
            hdu1.header.update('TELESCOP',instruct[1].header['TELESCOP'],'telescope')
        except:
            status = 0
        try:
            hdu1.header.update('INSTRUME',instruct[1].header['INSTRUME'],'detector type')
        except:
            status = 0
        try:
            hdu1.header.update('OBJECT',instruct[1].header['OBJECT'],'string version of KEPLERID')
        except:
            status = 0
        try:
            hdu1.header.update('KEPLERID',instruct[1].header['KEPLERID'],'unique Kepler target identifier')
        except:
            status = 0
        try:
            hdu1.header.update('RADESYS',instruct[1].header['RADESYS'],'reference frame of celestial coordinates')
        except:
            status = 0
        try:
            hdu1.header.update('RA_OBJ',instruct[1].header['RA_OBJ'],'[deg] right ascension from KIC')
        except:
            status = 0
        try:
            hdu1.header.update('DEC_OBJ',instruct[1].header['DEC_OBJ'],'[deg] declination from KIC')
        except:
            status = 0
        try:
            hdu1.header.update('EQUINOX',instruct[1].header['EQUINOX'],'equinox of celestial coordinate system')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEREF',instruct[1].header['TIMEREF'],'barycentric correction applied to times')
        except:
            status = 0
        try:
            hdu1.header.update('TASSIGN',instruct[1].header['TASSIGN'],'where time is assigned')
        except:
            status = 0
        try:
            hdu1.header.update('TIMESYS',instruct[1].header['TIMESYS'],'time system is barycentric JD')
        except:
            status = 0
        try:
            hdu1.header.update('BJDREFI',instruct[1].header['BJDREFI'],'integer part of BJD reference date')
        except:
            status = 0
        try:
            hdu1.header.update('BJDREFF',instruct[1].header['BJDREFF'],'fraction of the day in BJD reference date')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEUNIT',instruct[1].header['TIMEUNIT'],'time unit for TIME, TSTART and TSTOP')
        except:
            status = 0
        try:
            hdu1.header.update('TSTART',instruct[1].header['TSTART'],'observation start time in BJD-BJDREF')
        except:
            status = 0
        try:
            hdu1.header.update('TSTOP',instruct[1].header['TSTOP'],'observation stop time in BJD-BJDREF')
        except:
            status = 0
        try:
            hdu1.header.update('LC_START',instruct[1].header['LC_START'],'mid point of first cadence in MJD')
        except:
            status = 0
        try:
            hdu1.header.update('LC_END',instruct[1].header['LC_END'],'mid point of last cadence in MJD')
        except:
            status = 0
        try:
            hdu1.header.update('TELAPSE',instruct[1].header['TELAPSE'],'[d] TSTOP - TSTART')
        except:
            status = 0
        try:
            hdu1.header.update('LIVETIME',instruct[1].header['LIVETIME'],'[d] TELAPSE multiplied by DEADC')
        except:
            status = 0
        try:
            hdu1.header.update('EXPOSURE',instruct[1].header['EXPOSURE'],'[d] time on source')
        except:
            status = 0
        try:
            hdu1.header.update('DEADC',instruct[1].header['DEADC'],'deadtime correction')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEPIXR',instruct[1].header['TIMEPIXR'],'bin time beginning=0 middle=0.5 end=1')
        except:
            status = 0
        try:
            hdu1.header.update('TIERRELA',instruct[1].header['TIERRELA'],'[d] relative time error')
        except:
            status = 0
        try:
            hdu1.header.update('TIERABSO',instruct[1].header['TIERABSO'],'[d] absolute time error')
        except:
            status = 0
        try:
            hdu1.header.update('INT_TIME',instruct[1].header['INT_TIME'],'[s] photon accumulation time per frame')
        except:
            status = 0
        try:
            hdu1.header.update('READTIME',instruct[1].header['READTIME'],'[s] readout time per frame')
        except:
            status = 0
        try:
            hdu1.header.update('FRAMETIM',instruct[1].header['FRAMETIM'],'[s] frame time (INT_TIME + READTIME)')
        except:
            status = 0
        try:
            hdu1.header.update('NUM_FRM',instruct[1].header['NUM_FRM'],'number of frames per time stamp')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEDEL',instruct[1].header['TIMEDEL'],'[d] time resolution of data')
        except:
            status = 0
        try:
            hdu1.header.update('DATE-OBS',instruct[1].header['DATE-OBS'],'TSTART as UTC calendar date')
        except:
            status = 0
        try:
            hdu1.header.update('DATE-END',instruct[1].header['DATE-END'],'TSTOP as UTC calendar date')
        except:
            status = 0
        try:
            hdu1.header.update('BACKAPP',instruct[1].header['BACKAPP'],'background is subtracted')
        except:
            status = 0
        try:
            hdu1.header.update('DEADAPP',instruct[1].header['DEADAPP'],'deadtime applied')
        except:
            status = 0
        try:
            hdu1.header.update('VIGNAPP',instruct[1].header['VIGNAPP'],'vignetting or collimator correction applied')
        except:
            status = 0
        try:
            hdu1.header.update('GAIN',instruct[1].header['GAIN'],'[electrons/count] channel gain')
        except:
            status = 0
        try:
            hdu1.header.update('READNOIS',instruct[1].header['READNOIS'],'[electrons] read noise')
        except:
            status = 0
        try:
            hdu1.header.update('NREADOUT',instruct[1].header['NREADOUT'],'number of read per cadence')
        except:
            status = 0
        try:
            hdu1.header.update('TIMSLICE',instruct[1].header['TIMSLICE'],'time-slice readout sequence section')
        except:
            status = 0
        try:
            hdu1.header.update('MEANBLCK',instruct[1].header['MEANBLCK'],'[count] FSW mean black level')
        except:
            status = 0
        hdulist.append(hdu1)
        hdulist.writeto(outfile)
        status = kepkey.new('EXTNAME','APERTURE','name of extension',instruct[2],outfile,logfile,verbose)
        pyfits.append(outfile,instruct[2].data,instruct[2].header)
        status = kepio.closefits(instruct,logfile,verbose)
    else:
        message = 'WARNING -- KEPPIXSERIES: output FITS file requires > 999 columns. Non-compliant with FITS convention.'

        kepmsg.warn(logfile,message)

# plot style

    if status == 0:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.0,
                      'axes.labelsize': 32,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 8,
                      'legend.fontsize': 8,
                      'xtick.labelsize': 12,
                      'ytick.labelsize': 12}
            pylab.rcParams.update(params)
        except:
            pass

# plot pixel array

    fmin = 1.0e33
    fmax = -1.033
    if status == 0:
	pylab.figure(num=None,figsize=[12,12])
        pylab.clf()
        dx = 0.93 / xdim
        dy = 0.94 / ydim
        ax = pylab.axes([0.06,0.05,0.93,0.94])
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().xaxis.set_major_locator(matplotlib.ticker.MaxNLocator(integer=True))
        pylab.gca().yaxis.set_major_locator(matplotlib.ticker.MaxNLocator(integer=True))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)
        pylab.xlim(numpy.min(pixcoord1) - 0.5,numpy.max(pixcoord1) + 0.5)
        pylab.ylim(numpy.min(pixcoord2) - 0.5,numpy.max(pixcoord2) + 0.5)
        pylab.xlabel('time', {'color' : 'k'})
        pylab.ylabel('arbitrary flux', {'color' : 'k'})
        for i in range(ydim):
            for j in range(xdim):
                tmin = amin(time)
                tmax = amax(time)
                try:
                    numpy.isfinite(amin(pixseries[i,j,:]))
                    numpy.isfinite(amin(pixseries[i,j,:]))
                    fmin = amin(pixseries[i,j,:])
                    fmax = amax(pixseries[i,j,:])
                except:
                    ugh = 1
                xmin = tmin - (tmax - tmin) / 40
                xmax = tmax + (tmax - tmin) / 40
                ymin = fmin - (fmax - fmin) / 20
                ymax = fmax + (fmax - fmin) / 20
                if kepstat.bitInBitmap(maskimg[i,j],2):
                    pylab.axes([0.06+float(j)*dx,0.05+i*dy,dx,dy],axisbg='lightslategray')
                elif maskimg[i,j] == 0:
                    pylab.axes([0.06+float(j)*dx,0.05+i*dy,dx,dy],axisbg='black')
                else:
                    pylab.axes([0.06+float(j)*dx,0.05+i*dy,dx,dy])
                if j == int(xdim / 2) and i == 0:
                    pylab.setp(pylab.gca(),xticklabels=[],yticklabels=[])
                elif j == 0 and i == int(ydim / 2):
                    pylab.setp(pylab.gca(),xticklabels=[],yticklabels=[])
                else:
                    pylab.setp(pylab.gca(),xticklabels=[],yticklabels=[])
                ptime = time * 1.0
                ptime = numpy.insert(ptime,[0],ptime[0])
                ptime = numpy.append(ptime,ptime[-1])
                pflux = pixseries[i,j,:] * 1.0
                pflux = numpy.insert(pflux,[0],-1000.0)
                pflux = numpy.append(pflux,-1000.0)
                pylab.plot(time,pixseries[i,j,:],color='#0000ff',linestyle='-',linewidth=0.5)
                if not kepstat.bitInBitmap(maskimg[i,j],2):
                    pylab.fill(ptime,pflux,fc='lightslategray',linewidth=0.0,alpha=1.0)
                pylab.fill(ptime,pflux,fc='#FFF380',linewidth=0.0,alpha=1.0)
                if 'loc' in plottype:
                    pylab.xlim(xmin,xmax)
                    pylab.ylim(ymin,ymax)
                if 'glob' in plottype:
                    pylab.xlim(xmin,xmax)
                    pylab.ylim(1.0e-10,numpy.nanmax(pixseries) * 1.05)
                if 'full' in plottype:
                    pylab.xlim(xmin,xmax)
                    pylab.ylim(1.0e-10,ymax * 1.05)

# render plot

        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()	
        if plotfile.lower() != 'none':
            pylab.savefig(plotfile)

# stop time

    if status == 0:
        kepmsg.clock('KEPPIXSERIES ended at',logfile,verbose)

    return
Exemple #10
0
def kepstddev(infile,outfile,datacol,timescale,clobber,verbose,logfile,status,cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 44
    ticksize = 36
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPSTDDEV -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'timescale='+str(timescale)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPSTDDEV started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
        message = 'ERROR -- KEPSTDDEV: ' + outfile + ' exists. Use clobber=yes'
        status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        work1 = numpy.array([table.field('time'), table.field(datacol)])
        work1 = numpy.rot90(work1,3)
        work1 = work1[~numpy.isnan(work1).any(1)]            
 
# read table columns

    if status == 0:
        intime = work1[:,1] + bjdref
        indata = work1[:,0]

# calculate STDDEV in units of ppm

    if status == 0:
        stddev = running_frac_std(intime,indata,timescale/24) * 1.0e6
        astddev = numpy.std(indata) * 1.0e6
        cdpp = stddev / sqrt(timescale * 3600.0 / cadence)

# filter cdpp

    if status == 0:
        for i in range(len(cdpp)):
            if cdpp[i] > median(cdpp) * 10.0: cdpp[i] = cdpp[i-1]

# calculate median STDDEV

    if status == 0:
        medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:])
#        print '\nMedian %.1fhr standard deviation = %d ppm' % (timescale, median(stddev[:]))
        print '\nStandard deviation = %d ppm' % astddev

# calculate median STDDEV

    if status == 0:
        medcdpp = ones((len(cdpp)),dtype='float32') * median(cdpp[:])
        print 'Median %.1fhr CDPP = %d ppm' % (timescale, median(cdpp[:]))

# calculate RMS STDDEV

    if status == 0:
        rms, status = kepstat.rms(cdpp,zeros(len(stddev)),logfile,verbose)
        rmscdpp = ones((len(cdpp)),dtype='float32') * rms
        print '   RMS %.1fhr CDPP = %d ppm\n' % (timescale, rms)

# clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

# clean up y-axis units

    if status == 0:
        pout = copy(cdpp)
        nrm = math.ceil(math.log10(median(cdpp))) - 1.0
#	pout = pout / 10**nrm
#	ylab = '%.1fhr $\sigma$ (10$^%d$ ppm)' % (timescale,nrm)
	ylab = '%.1fhr $\sigma$ (ppm)' % timescale

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = pout.min()
	ymax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot style

    if status == 0:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': 36,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': 32,
                      'ytick.labelsize': 36}
            pylab.rcParams.update(params)
        except:
            pass

# define size of plot on monitor screen

	pylab.figure(figsize=[xsize,ysize])

# delete any fossil plots in the matplotlib window

        pylab.clf()

# position first axes inside the plotting window

        ax = pylab.axes([0.07,0.15,0.92,0.83])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        ax.yaxis.set_major_locator(MaxNLocator(5))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        pylab.setp(labels, 'rotation', 90,fontsize=36)

# plot flux vs time

        ltime = array([],dtype='float64')
        ldata = array([],dtype='float32')
        dt = 0
        work1 = 2.0 * cadence / 86400
        for i in range(1,len(ptime)-1):
            dt = ptime[i] - ptime[i-1]
            if dt < work1:
                ltime = append(ltime,ptime[i])
                ldata = append(ldata,pout[i])
            else:
                pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0)
                ltime = array([],dtype='float64')
                ldata = array([],dtype='float32')
        pylab.plot(ltime,ldata,color='#0000ff',linestyle='-',linewidth=1.0)

# plot the fill color below data time series, with no data gaps

	pylab.fill(ptime,pout,fc='#ffff00',linewidth=0.0,alpha=0.2)

# plot median CDPP

#        pylab.plot(intime - intime0,medcdpp / 10**nrm,color='r',linestyle='-',linewidth=2.0)
#        pylab.plot(intime - intime0,medcdpp,color='r',linestyle='-',linewidth=2.0)

# plot RMS CDPP

#        pylab.plot(intime - intime0,rmscdpp / 10**nrm,color='r',linestyle='--',linewidth=2.0)

# define plot x and y limits

	pylab.xlim(xmin - xr * 0.01, xmax + xr * 0.01)
	if ymin - yr * 0.01 <= 0.0:
            pylab.ylim(1.0e-10, ymax + yr * 0.01)
	else:
            pylab.ylim(ymin - yr * 0.01, ymax + yr * 0.01)
           
# plot labels

	pylab.xlabel(xlab, {'color' : 'k'})
        pylab.ylabel(ylab, {'color' : 'k'})

# make grid on plot

	pylab.grid()

# render plot

    if status == 0:
        if cmdLine: 
            pylab.show(block=True)
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()

# add NaNs back into data

    if status == 0:
        n = 0
        work1 = array([],dtype='float32')
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)
        for i in range(len(table.field(0))):
            if isfinite(table.field('time')[i]) and isfinite(table.field(datacol)[i]):
                work1 = append(work1,cdpp[n])
                n += 1
            else:
                work1 = append(work1,nan)

# write output file
                
    if status == 0:
        status = kepkey.new('MCDPP%d' % (timescale * 10.0),medcdpp[0],
                            'Median %.1fhr CDPP (ppm)' % timescale,
                            instr[1],outfile,logfile,verbose)
        status = kepkey.new('RCDPP%d' % (timescale * 10.0),rmscdpp[0],
                            'RMS %.1fhr CDPP (ppm)' % timescale,
                            instr[1],outfile,logfile,verbose)
        colname = 'CDPP_%d' % (timescale * 10)
	col1 = pyfits.Column(name=colname,format='E13.7',array=work1)
	cols = instr[1].data.columns + col1
	instr[1] = pyfits.new_table(cols,header=instr[1].header)
	instr.writeto(outfile)
	
# comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# close FITS

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

# end time

    if (status == 0):
	    message = 'KEPSTDDEV completed at'
    else:
	    message = '\nKEPSTDDEV aborted at'
    kepmsg.clock(message,logfile,verbose)
Exemple #11
0
def kepsmooth(infile,outfile,datacol,function,fscale,plot,plotlab,
              clobber,verbose,logfile,status, cmdLine=False): 

## startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 18
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

## log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPSMOOTH -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'function='+str(function)+' '
    call += 'fscale='+str(fscale)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    call += 'plotlab='+str(plotlab)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

## start time

    kepmsg.clock('KEPSMOOTH started at',logfile,verbose)

## test log file

    logfile = kepmsg.test(logfile)

## clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPSMOOTH: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

## open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
        if cadence == 0.0: 
            tstart, tstop, ncad, cadence, status = kepio.cadence(instr,infile,logfile,verbose,status) 
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

## fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

## read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile,table,logfile,verbose)
    if status == 0:
        flux, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            for i in range(len(table.field(0))):
                if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0):
                    table[naxis2] = table[i]
                    naxis2 += 1
            instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)

## read table columns

    if status == 0:
	try:
            intime = instr[1].data.field('barytime')
	except:
            intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose)
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

## smooth data

    if status == 0:
        outdata = kepfunc.smooth(indata,fscale/(cadence/86400),function)

## comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

## clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6: intime0 += 2.4e6
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

## clean up y-axis units

    if status == 0:
        pout = indata * 1.0
        pout2 = outdata * 1.0 
	nrm = len(str(int(numpy.nanmax(pout))))-1
	pout = pout / 10**nrm
	pout2 = pout2 / 10**nrm
	ylab = '10$^%d$ %s' % (nrm, re.sub('_','-',plotlab))

## data limits

	xmin = numpy.nanmin(ptime)
	xmax = numpy.nanmax(ptime)
	ymin = numpy.min(pout)
	ymax = numpy.nanmax(pout)
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)
        pout2 = insert(pout2,[0],[0.0]) 
        pout2 = append(pout2,0.0)

## plot light curve

    if status == 0 and plot:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            print('ERROR -- KEPSMOOTH: install latex for scientific plotting')
            status = 1
    if status == 0 and plot:
        pylab.figure(1,figsize=[xsize,ysize])

# delete any fossil plots in the matplotlib window

        pylab.clf()

# position axes inside the plotting window

	ax = pylab.subplot(111)
	pylab.subplots_adjust(0.06,0.1,0.93,0.88)

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90)

        pylab.plot(ptime[1:-1],pout[1:-1],color='#ff9900',linestyle='-',linewidth=lwidth)
        fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
        pylab.plot(ptime,pout2,color=lcolor,linestyle='-',linewidth=lwidth*4.0)
	pylab.xlabel(xlab, {'color' : 'k'})
	pylab.ylabel(ylab, {'color' : 'k'})
	xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)
        pylab.grid()

# render plot

    if cmdLine: 
        pylab.show()
    else: 
        pylab.ion()
        pylab.plot([])
        pylab.ioff()
	
## write output file

    if status == 0:
        for i in range(len(outdata)):
            instr[1].data.field(datacol)[i] = outdata[i]
        instr.writeto(outfile)
    
## close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPSMOOTH completed at'
    else:
	    message = '\nKEPSMOOTH aborted at'
    kepmsg.clock(message,logfile,verbose)
Exemple #12
0
def kepoutlier(infile,outfile,datacol,nsig,stepsize,npoly,niter,
               operation,ranges,plot,plotfit,clobber,verbose,logfile,status, cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPOUTLIER -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'nsig='+str(nsig)+' '
    call += 'stepsize='+str(stepsize)+' '
    call += 'npoly='+str(npoly)+' '
    call += 'niter='+str(niter)+' '
    call += 'operation='+str(operation)+' '
    call += 'ranges='+str(ranges)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    plotf = 'n'
    if (plotfit): plotf = 'y'
    call += 'plotfit='+plotf+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPOUTLIER started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPOUTLIER: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            try:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('barytime')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            except:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('time')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)
 
# read table columns

    if status == 0:
	try:
            intime = instr[1].data.field('barytime') + 2.4e6
	except:
            intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose)
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

# time ranges for region to be corrected

    if status == 0:
        t1, t2, status = kepio.timeranges(ranges,logfile,verbose)
        cadencelis, status = kepstat.filterOnRange(intime,t1,t2)

# find limits of each time step

    if status == 0:
        tstep1 = []; tstep2 = []
        work = intime[0]
        while work < intime[-1]:
            tstep1.append(work)
            tstep2.append(array([work+stepsize,intime[-1]],dtype='float64').min())
            work += stepsize

# find cadence limits of each time step

    if status == 0:
        cstep1 = []; cstep2 = []
        work1 = 0; work2 = 0
        for i in range(len(intime)):
            if intime[i] >= intime[work1] and intime[i] < intime[work1] + stepsize:
                work2 = i
            else:
                cstep1.append(work1)
                cstep2.append(work2)
                work1 = i; work2 = i
        cstep1.append(work1)
        cstep2.append(work2)

        outdata = indata * 1.0

# comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

# clean up y-axis units

    if status == 0:
        pout = indata * 1.0
	nrm = len(str(int(pout.max())))-1
	pout = pout / 10**nrm
	ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm

# data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = pout.min()
	ymax = pout.max()
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)

# plot light curve

    if status == 0 and plot:
        plotLatex = True
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            plotLatex = False
    if status == 0 and plot:
        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()

# plot data

        ax = pylab.axes([0.06,0.1,0.93,0.87])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

        pylab.plot(ptime,pout,color=lcolor,linestyle='-',linewidth=lwidth)
        fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
	xlabel(xlab, {'color' : 'k'})
        if not plotLatex:
            ylab = '10**%d electrons/sec' % nrm
        ylabel(ylab, {'color' : 'k'})
        grid()

# loop over each time step, fit data, determine rms

    if status == 0:
        masterfit = indata * 0.0
        mastersigma = zeros(len(masterfit))
        functype = 'poly' + str(npoly)
        for i in range(len(cstep1)):
            pinit = [indata[cstep1[i]:cstep2[i]+1].mean()]
            if npoly > 0:
                for j in range(npoly):
                    pinit.append(0.0)
            pinit = array(pinit,dtype='float32')
            try:
                coeffs, errors, covar, iiter, sigma, chi2, dof, fit, plotx, ploty, status = \
                    kepfit.lsqclip(functype,pinit,intime[cstep1[i]:cstep2[i]+1]-intime[cstep1[i]],
                                   indata[cstep1[i]:cstep2[i]+1],None,nsig,nsig,niter,logfile,
                                   verbose)
                for j in range(len(coeffs)):
                    masterfit[cstep1[i]:cstep2[i]+1] += coeffs[j] * \
                        (intime[cstep1[i]:cstep2[i]+1] - intime[cstep1[i]])**j
                for j in range(cstep1[i],cstep2[i]+1):
                    mastersigma[j] = sigma
                if plotfit:
                    pylab.plot(plotx+intime[cstep1[i]]-intime0,ploty / 10**nrm,
                               'g',lw='3')
            except:
                for j in range(cstep1[i],cstep2[i]+1):
                    masterfit[j] = indata[j]
                    mastersigma[j] = 1.0e10               
                message  = 'WARNING -- KEPOUTLIER: could not fit range '
                message += str(intime[cstep1[i]]) + '-' + str(intime[cstep2[i]])
                kepmsg.warn(None,message)

# reject outliers

    if status == 0:
        rejtime = []; rejdata = []; naxis2 = 0
        for i in range(len(masterfit)):
            if abs(indata[i] - masterfit[i]) > nsig * mastersigma[i] and i in cadencelis:
                rejtime.append(intime[i])
                rejdata.append(indata[i])
                if operation == 'replace':
                    [rnd] = kepstat.randarray([masterfit[i]],[mastersigma[i]])
                    table[naxis2] = table[i]
                    table.field(datacol)[naxis2] = rnd
                    naxis2 += 1
            else:
                table[naxis2] = table[i]
                naxis2 += 1
        instr[1].data = table[:naxis2]
        rejtime = array(rejtime,dtype='float64')
        rejdata = array(rejdata,dtype='float32')
        pylab.plot(rejtime-intime0,rejdata / 10**nrm,'ro')

# plot ranges

        xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)

# render plot

        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
# write output file

    if status == 0:
        instr.writeto(outfile)
    
# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

# end time

    if (status == 0):
	    message = 'KEPOUTLIER completed at'
    else:
	    message = '\nKEPOUTLIER aborted at'
    kepmsg.clock(message,logfile,verbose)
Exemple #13
0
def kepclip(infile,outfile,ranges,plot,plotcol,clobber,verbose,logfile,status,cmdLine=False): 

# startup parameters

    status = 0
    labelsize = 32
    ticksize = 24
    xsize = 18
    ysize = 10
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPCLIP -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'ranges='+ranges + ' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    call += 'plotcol='+plotcol+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPCLIP started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPCLIP: ' + outfile + ' exists. Use --clobber'
	    status = kepmsg.err(logfile,message,verbose)

# time ranges for region

    if status == 0:
        t1 = []; t2 = []
        t1, t2, status = kepio.timeranges(ranges,logfile,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# input data

    if status == 0:
        table = instr[1].data

# read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile,table,logfile,verbose)
    if status == 0:
        flux, status = kepio.readfitscol(infile,table,plotcol,logfile,verbose)
    if status == 0:
        barytime = barytime + bjdref
        if 'flux' in plotcol.lower():
            flux = flux / cadenom

# filter input data table

    if status == 0:
        naxis2 = 0
        work1 = array([],'float64')
        work2 = array([],'float32')
        for i in range(len(barytime)):
            if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0):
                reject = False
                for j in range(len(t1)):
                    if (barytime[i] >= t1[j] and barytime[i] <= t2[j]):
                        reject = True
                if not reject:
                    table[naxis2] = table[i]
                    work1 = append(work1,barytime[i])
                    work2 = append(work2,flux[i])
                    naxis2 += 1

# comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

# write output file

    if status == 0:
        instr[1].data = table[:naxis2]
        comment = 'NaN cadences removed from data'
        status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)
        instr.writeto(outfile)
    
# clean up x-axis unit

    if status == 0:
	barytime0 = float(int(tstart / 100) * 100.0)
	barytime = work1 - barytime0
        xlab = 'BJD $-$ %d' % barytime0

# clean up y-axis units

    if status == 0:
        try:
            nrm = len(str(int(work2.max())))-1
        except:
            nrm = 0
	flux = work2 / 10**nrm
	ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm

# data limits

	xmin = barytime.min()
	xmax = barytime.max()
	ymin = flux.min()
	ymax = flux.max()
	xr = xmax - xmin
	yr = ymax - ymin

# plotting arguments

    if status == 0 and plot:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            print 'ERROR -- KEPCLIP: install latex for scientific plotting'
            status = 1

# clear window, plot box

    if status == 0 and plot:
        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()
	ax = pylab.axes([0.05,0.1,0.94,0.88])

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

# plot line data

	ltime = [barytime[0]]; ldata = [flux[0]]
	for i in range(1,len(flux)):
            if (barytime[i-1] > barytime[i] - 0.025):
                ltime.append(barytime[i])
                ldata.append(flux[i])
            else:
                ltime = array(ltime, dtype=float64)
                ldata = array(ldata, dtype=float64)
                pylab.plot(ltime,ldata,color=lcolor,linestyle='-',linewidth=lwidth)
                ltime = []; ldata = []
	ltime = array(ltime, dtype=float64)
	ldata = array(ldata, dtype=float64)
	pylab.plot(ltime,ldata,color=lcolor,linestyle='-',linewidth=lwidth)

# plot fill data

        barytime = insert(barytime,[0],[barytime[0]]) 
        barytime = append(barytime,[barytime[-1]])
        flux = insert(flux,[0],[0.0]) 
        flux = append(flux,[0.0])
	fill(barytime,flux,fc=fcolor,linewidth=0.0,alpha=falpha)
	xlim(xmin-xr*0.01,xmax+xr*0.01)
	if ymin-yr*0.01 <= 0.0:
            ylim(1.0e-10,ymax+yr*0.01)
	else:
            ylim(ymin-yr*0.01,ymax+yr*0.01)
	xlabel(xlab, {'color' : 'k'})
	ylabel(ylab, {'color' : 'k'})
	grid()

# render plot

    if status == 0 and plot:
        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
# close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

# end time

    if (status == 0):
	    message = 'KEPCLIP completed at'
    else:
	    message = '\nKEPCLIP aborted at'
    kepmsg.clock(message,logfile,verbose)
def kepsmooth(infile,outfile,datacol,function,fscale,plot,plotlab,
              clobber,verbose,logfile,status, cmdLine=False): 

## startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 18
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

## log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPSMOOTH -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'function='+str(function)+' '
    call += 'fscale='+str(fscale)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    call += 'plotlab='+str(plotlab)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

## start time

    kepmsg.clock('KEPSMOOTH started at',logfile,verbose)

## test log file

    logfile = kepmsg.test(logfile)

## clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPSMOOTH: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

## open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
        if cadence == 0.0: 
            tstart, tstop, ncad, cadence, status = kepio.cadence(instr,infile,logfile,verbose,status) 
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

## fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

## read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile,table,logfile,verbose)
    if status == 0:
        flux, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            for i in range(len(table.field(0))):
                if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0):
                    table[naxis2] = table[i]
                    naxis2 += 1
            instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)

## read table columns

    if status == 0:
	try:
            intime = instr[1].data.field('barytime')
	except:
            intime, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose)
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

## smooth data

    if status == 0:
        outdata = kepfunc.smooth(indata,fscale/(cadence/86400),function)

## comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

## clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6: intime0 += 2.4e6
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

## clean up y-axis units

    if status == 0:
        pout = indata * 1.0
        pout2 = outdata * 1.0 
	nrm = len(str(int(numpy.nanmax(pout))))-1
	pout = pout / 10**nrm
	pout2 = pout2 / 10**nrm
	ylab = '10$^%d$ %s' % (nrm, re.sub('_','-',plotlab))

## data limits

	xmin = numpy.nanmin(ptime)
	xmax = numpy.nanmax(ptime)
	ymin = numpy.min(pout)
	ymax = numpy.nanmax(pout)
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)
        pout2 = insert(pout2,[0],[0.0]) 
        pout2 = append(pout2,0.0)

## plot light curve

    if status == 0 and plot:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            print 'ERROR -- KEPSMOOTH: install latex for scientific plotting'
            status = 1
    if status == 0 and plot:
        pylab.figure(1,figsize=[xsize,ysize])

# delete any fossil plots in the matplotlib window

        pylab.clf()

# position axes inside the plotting window

	ax = pylab.subplot(111)
	pylab.subplots_adjust(0.06,0.1,0.93,0.88)

# force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))

# rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90)

        pylab.plot(ptime[1:-1],pout[1:-1],color='#ff9900',linestyle='-',linewidth=lwidth)
        fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
        pylab.plot(ptime,pout2,color=lcolor,linestyle='-',linewidth=lwidth*4.0)
	pylab.xlabel(xlab, {'color' : 'k'})
	pylab.ylabel(ylab, {'color' : 'k'})
	xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)
        pylab.grid()

# render plot

    if cmdLine: 
        pylab.show()
    else: 
        pylab.ion()
        pylab.plot([])
        pylab.ioff()
	
## write output file

    if status == 0:
        for i in range(len(outdata)):
            instr[1].data.field(datacol)[i] = outdata[i]
        instr.writeto(outfile)
    
## close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPSMOOTH completed at'
    else:
	    message = '\nKEPSMOOTH aborted at'
    kepmsg.clock(message,logfile,verbose)
Exemple #15
0
def kepbinary(infile, outfile, datacol, m1, m2, r1, r2, period, bjd0, eccn,
              omega, inclination, c1, c2, c3, c4, albedo, depth, contamination,
              gamma, fitparams, eclipses, dopboost, tides, job, clobber,
              verbose, logfile, status):

    # startup parameters

    status = 0
    labelsize = 24
    ticksize = 16
    xsize = 17
    ysize = 7
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

    # log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPBINARY -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'datacol=' + datacol + ' '
    call += 'm1=' + str(m1) + ' '
    call += 'm2=' + str(m2) + ' '
    call += 'r1=' + str(r1) + ' '
    call += 'r2=' + str(r2) + ' '
    call += 'period=' + str(period) + ' '
    call += 'bjd0=' + str(bjd0) + ' '
    call += 'eccn=' + str(eccn) + ' '
    call += 'omega=' + str(omega) + ' '
    call += 'inclination=' + str(inclination) + ' '
    call += 'c1=' + str(c1) + ' '
    call += 'c2=' + str(c2) + ' '
    call += 'c3=' + str(c3) + ' '
    call += 'c4=' + str(c4) + ' '
    call += 'albedo=' + str(albedo) + ' '
    call += 'depth=' + str(depth) + ' '
    call += 'contamination=' + str(contamination) + ' '
    call += 'gamma=' + str(gamma) + ' '
    call += 'fitparams=' + str(fitparams) + ' '
    eclp = 'n'
    if (eclipses): eclp = 'y'
    call += 'eclipses=' + eclp + ' '
    boost = 'n'
    if (dopboost): boost = 'y'
    call += 'dopboost=' + boost + ' '
    distort = 'n'
    if (tides): distort = 'y'
    call += 'tides=' + distort + ' '
    call += 'job=' + str(job) + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    # start time

    kepmsg.clock('KEPBINARY started at', logfile, verbose)

    # test log file

    logfile = kepmsg.test(logfile)

    # check and format the list of fit parameters

    if status == 0 and job == 'fit':
        allParams = [m1, m2, r1, r2, period, bjd0, eccn, omega, inclination]
        allNames = [
            'm1', 'm2', 'r1', 'r2', 'period', 'bjd0', 'eccn', 'omega',
            'inclination'
        ]
        fitparams = re.sub('\|', ',', fitparams.strip())
        fitparams = re.sub('\.', ',', fitparams.strip())
        fitparams = re.sub(';', ',', fitparams.strip())
        fitparams = re.sub(':', ',', fitparams.strip())
        fitparams = re.sub('\s+', ',', fitparams.strip())
        fitparams, status = kepio.parselist(fitparams, logfile, verbose)
        for fitparam in fitparams:
            if fitparam.strip() not in allNames:
                message = 'ERROR -- KEPBINARY: unknown field in list of fit parameters'
                status = kepmsg.err(logfile, message, verbose)

# clobber output file

    if status == 0:
        if clobber: status = kepio.clobber(outfile, logfile, verbose)
        if kepio.fileexists(outfile):
            message = 'ERROR -- KEPBINARY: ' + outfile + ' exists. Use --clobber'
            status = kepmsg.err(logfile, message, verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile, 'readonly', logfile, verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(
            instr, infile, logfile, verbose, status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# check the data column exists

    if status == 0:
        try:
            instr[1].data.field(datacol)
        except:
            message = 'ERROR -- KEPBINARY: ' + datacol + ' column does not exist in ' + infile + '[1]'
            status = kepmsg.err(logfile, message, verbose)

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr, file, logfile, verbose)

# read table structure

    if status == 0:
        table, status = kepio.readfitstab(infile, instr[1], logfile, verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            try:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('barytime')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            except:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('time')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN', True, comment, instr[1], outfile,
                                logfile, verbose)

# read table columns

    if status == 0:
        try:
            time = instr[1].data.field('barytime')
        except:
            time, status = kepio.readfitscol(infile, instr[1].data, 'time',
                                             logfile, verbose)
        indata, status = kepio.readfitscol(infile, instr[1].data, datacol,
                                           logfile, verbose)
    if status == 0:
        time = time + bjdref
        indata = indata / cadenom

# limb-darkening cofficients

    if status == 0:
        limbdark = numpy.array([c1, c2, c3, c4], dtype='float32')

# time details for model

    if status == 0:
        npt = len(time)
        exptime = numpy.zeros((npt), dtype='float64')
        dtype = numpy.zeros((npt), dtype='int')
        for i in range(npt):
            try:
                exptime[i] = time[i + 1] - time[i]
            except:
                exptime[i] = time[i] - time[i - 1]

# calculate binary model

    if status == 0:
        tmodel = kepsim.transitModel(1.0, m1, m2, r1, r2, period, inclination,
                                     bjd0, eccn, omega, depth, albedo, c1, c2,
                                     c3, c4, gamma, contamination, npt, time,
                                     exptime, dtype, eclipses, dopboost, tides)

# re-normalize binary model to data

    if status == 0 and (job == 'overlay' or job == 'fit'):
        dmedian = numpy.median(indata)
        tmodel = tmodel / numpy.median(tmodel) * dmedian

# define arrays of floating and frozen parameters

    if status == 0 and job == 'fit':
        params = []
        paramNames = []
        arguments = []
        argNames = []
        for i in range(len(allNames)):
            if allNames[i] in fitparams:
                params.append(allParams[i])
                paramNames.append(allNames[i])
            else:
                arguments.append(allParams[i])
                argNames.append(allNames[i])
        params.append(dmedian)
        params = numpy.array(params, dtype='float32')

# subtract model from data

    if status == 0 and job == 'fit':
        deltam = numpy.abs(indata - tmodel)

# fit statistics

    if status == 0 and job == 'fit':
        aveDelta = numpy.sum(deltam) / npt
        chi2 = math.sqrt(
            numpy.sum(
                (indata - tmodel) * (indata - tmodel) / (npt - len(params))))

# fit model to data using downhill simplex

    if status == 0 and job == 'fit':
        print ''
        print '%4s %11s %11s' % ('iter', 'delta', 'chi^2')
        print '----------------------------'
        print '%4d %.5E %.5E' % (0, aveDelta, chi2)
        bestFit = scipy.optimize.fmin(
            fitModel,
            params,
            args=(paramNames, dmedian, m1, m2, r1, r2, period, bjd0, eccn,
                  omega, inclination, depth, albedo, c1, c2, c3, c4, gamma,
                  contamination, npt, time, exptime, indata, dtype, eclipses,
                  dopboost, tides),
            maxiter=1e4)

# calculate best fit binary model

    if status == 0 and job == 'fit':
        print ''
        for i in range(len(paramNames)):
            if 'm1' in paramNames[i].lower():
                m1 = bestFit[i]
                print '  M1 = %.3f Msun' % bestFit[i]
            elif 'm2' in paramNames[i].lower():
                m2 = bestFit[i]
                print '  M2 = %.3f Msun' % bestFit[i]
            elif 'r1' in paramNames[i].lower():
                r1 = bestFit[i]
                print '  R1 = %.4f Rsun' % bestFit[i]
            elif 'r2' in paramNames[i].lower():
                r2 = bestFit[i]
                print '  R2 = %.4f Rsun' % bestFit[i]
            elif 'period' in paramNames[i].lower():
                period = bestFit[i]
            elif 'bjd0' in paramNames[i].lower():
                bjd0 = bestFit[i]
                print 'BJD0 = %.8f' % bestFit[i]
            elif 'eccn' in paramNames[i].lower():
                eccn = bestFit[i]
                print '   e = %.3f' % bestFit[i]
            elif 'omega' in paramNames[i].lower():
                omega = bestFit[i]
                print '   w = %.3f deg' % bestFit[i]
            elif 'inclination' in paramNames[i].lower():
                inclination = bestFit[i]
                print '   i = %.3f deg' % bestFit[i]
        flux = bestFit[-1]
        print ''
        tmodel = kepsim.transitModel(flux, m1, m2, r1, r2, period, inclination,
                                     bjd0, eccn, omega, depth, albedo, c1, c2,
                                     c3, c4, gamma, contamination, npt, time,
                                     exptime, dtype, eclipses, dopboost, tides)

# subtract model from data

    if status == 0:
        deltaMod = indata - tmodel

# standard deviation of model

    if status == 0:
        stdDev = math.sqrt(
            numpy.sum((indata - tmodel) * (indata - tmodel)) / npt)

# clean up x-axis unit

    if status == 0:
        time0 = float(int(tstart / 100) * 100.0)
        ptime = time - time0
        xlab = 'BJD $-$ %d' % time0

# clean up y-axis units

    if status == 0:
        nrm = len(str(int(indata.max()))) - 1
        pout = indata / 10**nrm
        pmod = tmodel / 10**nrm
        pres = deltaMod / stdDev
        if job == 'fit' or job == 'overlay':
            try:
                ylab1 = 'Flux (10$^%d$ e$^-$ s$^{-1}$)' % nrm
                ylab2 = 'Residual ($\sigma$)'
            except:
                ylab1 = 'Flux (10**%d e-/s)' % nrm
                ylab2 = 'Residual (sigma)'
        else:
            ylab1 = 'Normalized Flux'

# dynamic range of model plot

    if status == 0 and job == 'model':
        xmin = ptime.min()
        xmax = ptime.max()
        ymin = tmodel.min()
        ymax = tmodel.max()

# dynamic range of model/data overlay or fit

    if status == 0 and (job == 'overlay' or job == 'fit'):
        xmin = ptime.min()
        xmax = ptime.max()
        ymin = pout.min()
        ymax = pout.max()
        tmin = pmod.min()
        tmax = pmod.max()
        ymin = numpy.array([ymin, tmin]).min()
        ymax = numpy.array([ymax, tmax]).max()
        rmin = pres.min()
        rmax = pres.max()

# pad the dynamic range

    if status == 0:
        xr = (xmax - xmin) / 80
        yr = (ymax - ymin) / 40
        if job == 'overlay' or job == 'fit':
            rr = (rmax - rmin) / 40

# set up plot style

    if status == 0:
        labelsize = 24
        ticksize = 16
        xsize = 17
        ysize = 7
        lcolor = '#0000ff'
        lwidth = 1.0
        fcolor = '#ffff00'
        falpha = 0.2
        params = {
            'backend': 'png',
            'axes.linewidth': 2.5,
            'axes.labelsize': 24,
            'axes.font': 'sans-serif',
            'axes.fontweight': 'bold',
            'text.fontsize': 12,
            'legend.fontsize': 12,
            'xtick.labelsize': 16,
            'ytick.labelsize': 16
        }
        pylab.rcParams.update(params)
        pylab.figure(figsize=[14, 10])
        pylab.clf()

        # main plot window

        ax = pylab.axes([0.05, 0.3, 0.94, 0.68])
        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

# plot model time series

    if status == 0 and job == 'model':
        pylab.plot(ptime,
                   tmodel,
                   color='#0000ff',
                   linestyle='-',
                   linewidth=1.0)
        ptime = numpy.insert(ptime, [0.0], ptime[0])
        ptime = numpy.append(ptime, ptime[-1])
        tmodel = numpy.insert(tmodel, [0.0], 0.0)
        tmodel = numpy.append(tmodel, 0.0)
        pylab.fill(ptime, tmodel, fc='#ffff00', linewidth=0.0, alpha=0.2)

# plot data time series and best fit

    if status == 0 and (job == 'overlay' or job == 'fit'):
        pylab.plot(ptime, pout, color='#0000ff', linestyle='-', linewidth=1.0)
        ptime = numpy.insert(ptime, [0.0], ptime[0])
        ptime = numpy.append(ptime, ptime[-1])
        pout = numpy.insert(pout, [0], 0.0)
        pout = numpy.append(pout, 0.0)
        pylab.fill(ptime, pout, fc='#ffff00', linewidth=0.0, alpha=0.2)
        pylab.plot(ptime[1:-1], pmod, color='r', linestyle='-', linewidth=2.0)

# ranges and labels

    if status == 0:
        pylab.xlim(xmin - xr, xmax + xr)
        pylab.ylim(ymin - yr, ymax + yr)
        pylab.xlabel(xlab, {'color': 'k'})
        pylab.ylabel(ylab1, {'color': 'k'})

# residual plot window

    if status == 0 and (job == 'overlay' or job == 'fit'):
        ax = pylab.axes([0.05, 0.07, 0.94, 0.23])
        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

# plot residual time series

    if status == 0 and (job == 'overlay' or job == 'fit'):
        pylab.plot([ptime[0], ptime[-1]], [0.0, 0.0],
                   color='r',
                   linestyle='--',
                   linewidth=1.0)
        pylab.plot([ptime[0], ptime[-1]], [-1.0, -1.0],
                   color='r',
                   linestyle='--',
                   linewidth=1.0)
        pylab.plot([ptime[0], ptime[-1]], [1.0, 1.0],
                   color='r',
                   linestyle='--',
                   linewidth=1.0)
        pylab.plot(ptime[1:-1],
                   pres,
                   color='#0000ff',
                   linestyle='-',
                   linewidth=1.0)
        pres = numpy.insert(pres, [0], rmin)
        pres = numpy.append(pres, rmin)
        pylab.fill(ptime, pres, fc='#ffff00', linewidth=0.0, alpha=0.2)

# ranges and labels of residual time series

    if status == 0 and (job == 'overlay' or job == 'fit'):
        pylab.xlim(xmin - xr, xmax + xr)
        pylab.ylim(rmin - rr, rmax + rr)
        pylab.xlabel(xlab, {'color': 'k'})
        pylab.ylabel(ylab2, {'color': 'k'})

# display the plot

    if status == 0:
        pylab.draw()
Exemple #16
0
def kepdiffim(infile,outfile,plotfile,imscale,colmap,filter,function,cutoff,clobber,verbose,logfile,status,cmdLine=False): 

# input arguments

    status = 0
    seterr(all="ignore") 

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPDIFFIM -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'plotfile='+plotfile+' '
    call += 'imscale='+imscale+' '
    call += 'colmap='+colmap+' '
    filt = 'n'
    if (filter): filt = 'y'
    call += 'filter='+filt+ ' '
    call += 'function='+function+' '
    call += 'cutoff='+str(cutoff)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPDIFFIM started at: ',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
        message = 'ERROR -- KEPDIFFIM: ' + outfile + ' exists. Use --clobber'
        status = kepmsg.err(logfile,message,verbose)

# reference color map

    if colmap == 'browse':
        status = cmap_plot()

# open TPF FITS file

    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \
            kepio.readTPF(infile,'TIME',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \
            kepio.readTPF(infile,'TIMECORR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \
            kepio.readTPF(infile,'CADENCENO',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \
            kepio.readTPF(infile,'FLUX',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \
            kepio.readTPF(infile,'FLUX_ERR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, qual, status = \
            kepio.readTPF(infile,'QUALITY',logfile,verbose)

# read mask defintion data from TPF file

    if status == 0:
        maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition(infile,logfile,verbose)

# print target data

    if status == 0:
        print ''
        print '      KepID:  %s' % kepid
        print ' RA (J2000):  %s' % ra
        print 'Dec (J2000): %s' % dec
        print '     KepMag:  %s' % kepmag
        print '   SkyGroup:    %2s' % skygroup
        print '     Season:    %2s' % str(season)
        print '    Channel:    %2s' % channel
        print '     Module:    %2s' % module
        print '     Output:     %1s' % output
        print ''

# how many quality = 0 rows?

    if status == 0:
        npts = 0
        nrows = len(fluxpixels)
        for i in range(nrows):
            if qual[i] == 0 and \
                    numpy.isfinite(barytime[i]) and \
                    numpy.isfinite(fluxpixels[i,ydim*xdim/2]):
                npts += 1
        time = empty((npts))
        timecorr = empty((npts))
        cadenceno = empty((npts))
        quality = empty((npts))
        pixseries = empty((ydim*xdim,npts))
        errseries = empty((ydim*xdim,npts))

# construct output light curves

    if status == 0:
        np = 0
        for i in range(ydim*xdim):
            npts = 0
            for k in range(nrows):
                if qual[k] == 0 and \
                        numpy.isfinite(barytime[k]) and \
                        numpy.isfinite(fluxpixels[k,ydim*xdim/2]):
                    time[npts] = barytime[k]
                    timecorr[npts] = tcorr[k]
                    cadenceno[npts] = cadno[k]
                    quality[npts] = qual[k]
                    pixseries[i,npts] = fluxpixels[k,np]
                    errseries[i,npts] = errpixels[k,np]
                    npts += 1
            np += 1

# define data sampling

    if status == 0 and filter:
        tpf, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0 and filter:
        cadence, status = kepkey.cadence(tpf[1],infile,logfile,verbose)     
        tr = 1.0 / (cadence / 86400)
        timescale = 1.0 / (cutoff / tr)

# define convolution function

    if status == 0 and filter:
        if function == 'boxcar':
            filtfunc = numpy.ones(numpy.ceil(timescale))
        elif function == 'gauss':
            timescale /= 2
            dx = numpy.ceil(timescale * 10 + 1)
            filtfunc = kepfunc.gauss()
            filtfunc = filtfunc([1.0,dx/2-1.0,timescale],linspace(0,dx-1,dx))
        elif function == 'sinc':
            dx = numpy.ceil(timescale * 12 + 1)
            fx = linspace(0,dx-1,dx)
            fx = fx - dx / 2 + 0.5
            fx /= timescale
            filtfunc = numpy.sinc(fx)
        filtfunc /= numpy.sum(filtfunc)

# pad time series at both ends with noise model

    if status == 0 and filter:
        for i in range(ydim*xdim):
            ave, sigma  = kepstat.stdev(pixseries[i,:len(filtfunc)])
            padded = numpy.append(kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                        numpy.ones(len(filtfunc)) * sigma), pixseries[i,:])
            ave, sigma  = kepstat.stdev(pixseries[i,-len(filtfunc):])
            padded = numpy.append(padded, kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                                numpy.ones(len(filtfunc)) * sigma))

# convolve data

            if status == 0:
                convolved = convolve(padded,filtfunc,'same')

# remove padding from the output array

            if status == 0:
                outdata = convolved[len(filtfunc):-len(filtfunc)]
                            
# subtract low frequencies

            if status == 0:
                outmedian = median(outdata)
                pixseries[i,:] = pixseries[i,:] - outdata + outmedian

# sum pixels over cadence

    if status == 0:
        np = 0
        nrows = len(fluxpixels)
        pixsum = zeros((ydim*xdim))
        errsum = zeros((ydim*xdim))
        for i in range(npts):
            if quality[i] == 0:
                pixsum += pixseries[:,i]
                errsum += errseries[:,i]**2
                np += 1
        pixsum /= np
        errsum = sqrt(errsum) / np

# calculate standard deviation pixels

    if status == 0:
        pixvar = zeros((ydim*xdim))
        for i in range(npts):
            if quality[i] == 0:
                pixvar += (pixsum - pixseries[:,i] / errseries[:,i])**2 
        pixvar = numpy.sqrt(pixvar)

# median pixel errors

    if status == 0:
        errmed = empty((ydim*xdim))
        for i in range(ydim*xdim):
            errmed[i] = numpy.median(errseries[:,i])

# calculate chi distribution pixels

    if status == 0:
        pixdev = zeros((ydim*xdim))
        for i in range(npts):
            if quality[i] == 0:
                pixdev += ((pixsum - pixseries[:,i]) / pixsum)**2 
        pixdev = numpy.sqrt(pixdev)


#        pixdev = numpy.sqrt(pixvar) / errsum #errmed

# image scale and intensity limits

    if status == 0:
        pixsum_pl, zminsum, zmaxsum = kepplot.intScale1D(pixsum,imscale)
        pixvar_pl, zminvar, zmaxvar = kepplot.intScale1D(pixvar,imscale)
        pixdev_pl, zmindev, zmaxdev = kepplot.intScale1D(pixdev,imscale)

# construct output summed image

    if status == 0:
        imgsum = empty((ydim,xdim))
        imgvar = empty((ydim,xdim))
        imgdev = empty((ydim,xdim))
        imgsum_pl = empty((ydim,xdim))
        imgvar_pl = empty((ydim,xdim))
        imgdev_pl = empty((ydim,xdim))
        n = 0
        for i in range(ydim):
            for j in range(xdim):
                imgsum[i,j] = pixsum[n]
                imgvar[i,j] = pixvar[n]
                imgdev[i,j] = pixdev[n]
                imgsum_pl[i,j] = pixsum_pl[n]
                imgvar_pl[i,j] = pixvar_pl[n]
                imgdev_pl[i,j] = pixdev_pl[n]
                n += 1

# construct output file

    if status == 0:
        instruct, status = kepio.openfits(infile,'readonly',logfile,verbose)
        status = kepkey.history(call,instruct[0],outfile,logfile,verbose)
        hdulist = HDUList(instruct[0])
        hdulist.writeto(outfile)
        status = kepkey.new('EXTNAME','FLUX','name of extension',instruct[2],outfile,logfile,verbose)
        pyfits.append(outfile,imgsum,instruct[2].header)
        status = kepkey.new('EXTNAME','CHI','name of extension',instruct[2],outfile,logfile,verbose)
        pyfits.append(outfile,imgvar,instruct[2].header)
        status = kepkey.new('EXTNAME','STDDEV','name of extension',instruct[2],outfile,logfile,verbose)
        pyfits.append(outfile,imgdev,instruct[2].header)
        status = kepkey.new('EXTNAME','APERTURE','name of extension',instruct[2],outfile,logfile,verbose)
        pyfits.append(outfile,instruct[2].data,instruct[2].header)
        status = kepio.closefits(instruct,logfile,verbose)

# pixel limits of the subimage

    if status == 0:
        ymin = row
        ymax = ymin + ydim
        xmin = column
        xmax = xmin + xdim

# plot limits for summed image

        ymin = float(ymin) - 0.5
        ymax = float(ymax) - 0.5
        xmin = float(xmin) - 0.5
        xmax = float(xmax) - 0.5

# plot style

        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': 24,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': 10,
                      'ytick.labelsize': 10}
            pylab.rcParams.update(params)
        except:
            'ERROR -- KEPDIFFIM: install latex for scientific plotting'
            status = 1

    if status == 0:
        plotimage(imgsum_pl,imgvar_pl,imgdev_pl,zminsum,zminvar,zmindev,
                  zmaxsum,zmaxvar,zmaxdev,xmin,xmax,ymin,ymax,colmap,plotfile,cmdLine)
        
# stop time

    kepmsg.clock('KEPDIFFIM ended at: ',logfile,verbose)

    return
Exemple #17
0
def keppixseries(infile,
                 outfile,
                 plotfile,
                 plottype,
                 filter,
                 function,
                 cutoff,
                 clobber,
                 verbose,
                 logfile,
                 status,
                 cmdLine=False):

    # input arguments

    status = 0
    seterr(all="ignore")

    # log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPPIXSERIES -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'plotfile=' + plotfile + ' '
    call += 'plottype=' + plottype + ' '
    filt = 'n'
    if (filter): filt = 'y'
    call += 'filter=' + filt + ' '
    call += 'function=' + function + ' '
    call += 'cutoff=' + str(cutoff) + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    # start time

    kepmsg.clock('KEPPIXSERIES started at', logfile, verbose)

    # test log file

    logfile = kepmsg.test(logfile)

    # clobber output file

    if clobber: status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = 'ERROR -- KEPPIXSERIES: ' + outfile + ' exists. Use --clobber'
        status = kepmsg.err(logfile, message, verbose)

# open TPF FITS file

    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \
            kepio.readTPF(infile,'TIME',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \
            kepio.readTPF(infile,'TIMECORR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \
            kepio.readTPF(infile,'CADENCENO',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \
            kepio.readTPF(infile,'FLUX',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \
            kepio.readTPF(infile,'FLUX_ERR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, qual, status = \
            kepio.readTPF(infile,'QUALITY',logfile,verbose)

# read mask defintion data from TPF file

    if status == 0:
        maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition(
            infile, logfile, verbose)

# print target data

    if status == 0:
        print ''
        print '      KepID:  %s' % kepid
        print ' RA (J2000):  %s' % ra
        print 'Dec (J2000): %s' % dec
        print '     KepMag:  %s' % kepmag
        print '   SkyGroup:    %2s' % skygroup
        print '     Season:    %2s' % str(season)
        print '    Channel:    %2s' % channel
        print '     Module:    %2s' % module
        print '     Output:     %1s' % output
        print ''

# how many quality = 0 rows?

    if status == 0:
        npts = 0
        nrows = len(fluxpixels)
        for i in range(nrows):
            if qual[i] == 0 and \
                    numpy.isfinite(barytime[i]) and \
                    numpy.isfinite(fluxpixels[i,ydim*xdim/2]):
                npts += 1
        time = empty((npts))
        timecorr = empty((npts))
        cadenceno = empty((npts))
        quality = empty((npts))
        pixseries = empty((ydim, xdim, npts))
        errseries = empty((ydim, xdim, npts))

# construct output light curves

    if status == 0:
        np = 0
        for i in range(ydim):
            for j in range(xdim):
                npts = 0
                for k in range(nrows):
                    if qual[k] == 0 and \
                    numpy.isfinite(barytime[k]) and \
                    numpy.isfinite(fluxpixels[k,ydim*xdim/2]):
                        time[npts] = barytime[k]
                        timecorr[npts] = tcorr[k]
                        cadenceno[npts] = cadno[k]
                        quality[npts] = qual[k]
                        pixseries[i, j, npts] = fluxpixels[k, np]
                        errseries[i, j, npts] = errpixels[k, np]
                        npts += 1
                np += 1

# define data sampling

    if status == 0 and filter:
        tpf, status = kepio.openfits(infile, 'readonly', logfile, verbose)
    if status == 0 and filter:
        cadence, status = kepkey.cadence(tpf[1], infile, logfile, verbose)
        tr = 1.0 / (cadence / 86400)
        timescale = 1.0 / (cutoff / tr)

# define convolution function

    if status == 0 and filter:
        if function == 'boxcar':
            filtfunc = numpy.ones(numpy.ceil(timescale))
        elif function == 'gauss':
            timescale /= 2
            dx = numpy.ceil(timescale * 10 + 1)
            filtfunc = kepfunc.gauss()
            filtfunc = filtfunc([1.0, dx / 2 - 1.0, timescale],
                                linspace(0, dx - 1, dx))
        elif function == 'sinc':
            dx = numpy.ceil(timescale * 12 + 1)
            fx = linspace(0, dx - 1, dx)
            fx = fx - dx / 2 + 0.5
            fx /= timescale
            filtfunc = numpy.sinc(fx)
        filtfunc /= numpy.sum(filtfunc)

# pad time series at both ends with noise model

    if status == 0 and filter:
        for i in range(ydim):
            for j in range(xdim):
                ave, sigma = kepstat.stdev(pixseries[i, j, :len(filtfunc)])
                padded = numpy.append(kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                            numpy.ones(len(filtfunc)) * sigma), pixseries[i,j,:])
                ave, sigma = kepstat.stdev(pixseries[i, j, -len(filtfunc):])
                padded = numpy.append(padded, kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                                    numpy.ones(len(filtfunc)) * sigma))

                # convolve data

                if status == 0:
                    convolved = convolve(padded, filtfunc, 'same')

# remove padding from the output array

                if status == 0:
                    outdata = convolved[len(filtfunc):-len(filtfunc)]

# subtract low frequencies

                if status == 0:
                    outmedian = median(outdata)
                    pixseries[i,
                              j, :] = pixseries[i, j, :] - outdata + outmedian

# construct output file

    if status == 0 and ydim * xdim < 1000:
        instruct, status = kepio.openfits(infile, 'readonly', logfile, verbose)
        status = kepkey.history(call, instruct[0], outfile, logfile, verbose)
        hdulist = HDUList(instruct[0])
        cols = []
        cols.append(
            Column(name='TIME',
                   format='D',
                   unit='BJD - 2454833',
                   disp='D12.7',
                   array=time))
        cols.append(
            Column(name='TIMECORR',
                   format='E',
                   unit='d',
                   disp='E13.6',
                   array=timecorr))
        cols.append(
            Column(name='CADENCENO', format='J', disp='I10', array=cadenceno))
        cols.append(Column(name='QUALITY', format='J', array=quality))
        for i in range(ydim):
            for j in range(xdim):
                colname = 'COL%d_ROW%d' % (i + column, j + row)
                cols.append(
                    Column(name=colname,
                           format='E',
                           disp='E13.6',
                           array=pixseries[i, j, :]))
        hdu1 = new_table(ColDefs(cols))
        try:
            hdu1.header.update('INHERIT', True, 'inherit the primary header')
        except:
            status = 0
        try:
            hdu1.header.update('EXTNAME', 'PIXELSERIES', 'name of extension')
        except:
            status = 0
        try:
            hdu1.header.update(
                'EXTVER', instruct[1].header['EXTVER'],
                'extension version number (not format version)')
        except:
            status = 0
        try:
            hdu1.header.update('TELESCOP', instruct[1].header['TELESCOP'],
                               'telescope')
        except:
            status = 0
        try:
            hdu1.header.update('INSTRUME', instruct[1].header['INSTRUME'],
                               'detector type')
        except:
            status = 0
        try:
            hdu1.header.update('OBJECT', instruct[1].header['OBJECT'],
                               'string version of KEPLERID')
        except:
            status = 0
        try:
            hdu1.header.update('KEPLERID', instruct[1].header['KEPLERID'],
                               'unique Kepler target identifier')
        except:
            status = 0
        try:
            hdu1.header.update('RADESYS', instruct[1].header['RADESYS'],
                               'reference frame of celestial coordinates')
        except:
            status = 0
        try:
            hdu1.header.update('RA_OBJ', instruct[1].header['RA_OBJ'],
                               '[deg] right ascension from KIC')
        except:
            status = 0
        try:
            hdu1.header.update('DEC_OBJ', instruct[1].header['DEC_OBJ'],
                               '[deg] declination from KIC')
        except:
            status = 0
        try:
            hdu1.header.update('EQUINOX', instruct[1].header['EQUINOX'],
                               'equinox of celestial coordinate system')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEREF', instruct[1].header['TIMEREF'],
                               'barycentric correction applied to times')
        except:
            status = 0
        try:
            hdu1.header.update('TASSIGN', instruct[1].header['TASSIGN'],
                               'where time is assigned')
        except:
            status = 0
        try:
            hdu1.header.update('TIMESYS', instruct[1].header['TIMESYS'],
                               'time system is barycentric JD')
        except:
            status = 0
        try:
            hdu1.header.update('BJDREFI', instruct[1].header['BJDREFI'],
                               'integer part of BJD reference date')
        except:
            status = 0
        try:
            hdu1.header.update('BJDREFF', instruct[1].header['BJDREFF'],
                               'fraction of the day in BJD reference date')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEUNIT', instruct[1].header['TIMEUNIT'],
                               'time unit for TIME, TSTART and TSTOP')
        except:
            status = 0
        try:
            hdu1.header.update('TSTART', instruct[1].header['TSTART'],
                               'observation start time in BJD-BJDREF')
        except:
            status = 0
        try:
            hdu1.header.update('TSTOP', instruct[1].header['TSTOP'],
                               'observation stop time in BJD-BJDREF')
        except:
            status = 0
        try:
            hdu1.header.update('LC_START', instruct[1].header['LC_START'],
                               'mid point of first cadence in MJD')
        except:
            status = 0
        try:
            hdu1.header.update('LC_END', instruct[1].header['LC_END'],
                               'mid point of last cadence in MJD')
        except:
            status = 0
        try:
            hdu1.header.update('TELAPSE', instruct[1].header['TELAPSE'],
                               '[d] TSTOP - TSTART')
        except:
            status = 0
        try:
            hdu1.header.update('LIVETIME', instruct[1].header['LIVETIME'],
                               '[d] TELAPSE multiplied by DEADC')
        except:
            status = 0
        try:
            hdu1.header.update('EXPOSURE', instruct[1].header['EXPOSURE'],
                               '[d] time on source')
        except:
            status = 0
        try:
            hdu1.header.update('DEADC', instruct[1].header['DEADC'],
                               'deadtime correction')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEPIXR', instruct[1].header['TIMEPIXR'],
                               'bin time beginning=0 middle=0.5 end=1')
        except:
            status = 0
        try:
            hdu1.header.update('TIERRELA', instruct[1].header['TIERRELA'],
                               '[d] relative time error')
        except:
            status = 0
        try:
            hdu1.header.update('TIERABSO', instruct[1].header['TIERABSO'],
                               '[d] absolute time error')
        except:
            status = 0
        try:
            hdu1.header.update('INT_TIME', instruct[1].header['INT_TIME'],
                               '[s] photon accumulation time per frame')
        except:
            status = 0
        try:
            hdu1.header.update('READTIME', instruct[1].header['READTIME'],
                               '[s] readout time per frame')
        except:
            status = 0
        try:
            hdu1.header.update('FRAMETIM', instruct[1].header['FRAMETIM'],
                               '[s] frame time (INT_TIME + READTIME)')
        except:
            status = 0
        try:
            hdu1.header.update('NUM_FRM', instruct[1].header['NUM_FRM'],
                               'number of frames per time stamp')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEDEL', instruct[1].header['TIMEDEL'],
                               '[d] time resolution of data')
        except:
            status = 0
        try:
            hdu1.header.update('DATE-OBS', instruct[1].header['DATE-OBS'],
                               'TSTART as UTC calendar date')
        except:
            status = 0
        try:
            hdu1.header.update('DATE-END', instruct[1].header['DATE-END'],
                               'TSTOP as UTC calendar date')
        except:
            status = 0
        try:
            hdu1.header.update('BACKAPP', instruct[1].header['BACKAPP'],
                               'background is subtracted')
        except:
            status = 0
        try:
            hdu1.header.update('DEADAPP', instruct[1].header['DEADAPP'],
                               'deadtime applied')
        except:
            status = 0
        try:
            hdu1.header.update('VIGNAPP', instruct[1].header['VIGNAPP'],
                               'vignetting or collimator correction applied')
        except:
            status = 0
        try:
            hdu1.header.update('GAIN', instruct[1].header['GAIN'],
                               '[electrons/count] channel gain')
        except:
            status = 0
        try:
            hdu1.header.update('READNOIS', instruct[1].header['READNOIS'],
                               '[electrons] read noise')
        except:
            status = 0
        try:
            hdu1.header.update('NREADOUT', instruct[1].header['NREADOUT'],
                               'number of read per cadence')
        except:
            status = 0
        try:
            hdu1.header.update('TIMSLICE', instruct[1].header['TIMSLICE'],
                               'time-slice readout sequence section')
        except:
            status = 0
        try:
            hdu1.header.update('MEANBLCK', instruct[1].header['MEANBLCK'],
                               '[count] FSW mean black level')
        except:
            status = 0
        hdulist.append(hdu1)
        hdulist.writeto(outfile)
        status = kepkey.new('EXTNAME', 'APERTURE', 'name of extension',
                            instruct[2], outfile, logfile, verbose)
        pyfits.append(outfile, instruct[2].data, instruct[2].header)
        status = kepio.closefits(instruct, logfile, verbose)
    else:
        message = 'WARNING -- KEPPIXSERIES: output FITS file requires > 999 columns. Non-compliant with FITS convention.'

        kepmsg.warn(logfile, message)

# plot style

    if status == 0:
        try:
            params = {
                'backend': 'png',
                'axes.linewidth': 2.0,
                'axes.labelsize': 32,
                'axes.font': 'sans-serif',
                'axes.fontweight': 'bold',
                'text.fontsize': 8,
                'legend.fontsize': 8,
                'xtick.labelsize': 12,
                'ytick.labelsize': 12
            }
            pylab.rcParams.update(params)
        except:
            pass

# plot pixel array

    fmin = 1.0e33
    fmax = -1.033
    if status == 0:
        pylab.figure(num=None, figsize=[12, 12])
        pylab.clf()
        dx = 0.93 / xdim
        dy = 0.94 / ydim
        ax = pylab.axes([0.06, 0.05, 0.93, 0.94])
        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().xaxis.set_major_locator(
            matplotlib.ticker.MaxNLocator(integer=True))
        pylab.gca().yaxis.set_major_locator(
            matplotlib.ticker.MaxNLocator(integer=True))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)
        pylab.xlim(numpy.min(pixcoord1) - 0.5, numpy.max(pixcoord1) + 0.5)
        pylab.ylim(numpy.min(pixcoord2) - 0.5, numpy.max(pixcoord2) + 0.5)
        pylab.xlabel('time', {'color': 'k'})
        pylab.ylabel('arbitrary flux', {'color': 'k'})
        for i in range(ydim):
            for j in range(xdim):
                tmin = amin(time)
                tmax = amax(time)
                try:
                    numpy.isfinite(amin(pixseries[i, j, :]))
                    numpy.isfinite(amin(pixseries[i, j, :]))
                    fmin = amin(pixseries[i, j, :])
                    fmax = amax(pixseries[i, j, :])
                except:
                    ugh = 1
                xmin = tmin - (tmax - tmin) / 40
                xmax = tmax + (tmax - tmin) / 40
                ymin = fmin - (fmax - fmin) / 20
                ymax = fmax + (fmax - fmin) / 20
                if kepstat.bitInBitmap(maskimg[i, j], 2):
                    pylab.axes([0.06 + float(j) * dx, 0.05 + i * dy, dx, dy],
                               axisbg='lightslategray')
                elif maskimg[i, j] == 0:
                    pylab.axes([0.06 + float(j) * dx, 0.05 + i * dy, dx, dy],
                               axisbg='black')
                else:
                    pylab.axes([0.06 + float(j) * dx, 0.05 + i * dy, dx, dy])
                if j == int(xdim / 2) and i == 0:
                    pylab.setp(pylab.gca(), xticklabels=[], yticklabels=[])
                elif j == 0 and i == int(ydim / 2):
                    pylab.setp(pylab.gca(), xticklabels=[], yticklabels=[])
                else:
                    pylab.setp(pylab.gca(), xticklabels=[], yticklabels=[])
                ptime = time * 1.0
                ptime = numpy.insert(ptime, [0], ptime[0])
                ptime = numpy.append(ptime, ptime[-1])
                pflux = pixseries[i, j, :] * 1.0
                pflux = numpy.insert(pflux, [0], -1000.0)
                pflux = numpy.append(pflux, -1000.0)
                pylab.plot(time,
                           pixseries[i, j, :],
                           color='#0000ff',
                           linestyle='-',
                           linewidth=0.5)
                if not kepstat.bitInBitmap(maskimg[i, j], 2):
                    pylab.fill(ptime,
                               pflux,
                               fc='lightslategray',
                               linewidth=0.0,
                               alpha=1.0)
                pylab.fill(ptime,
                           pflux,
                           fc='#FFF380',
                           linewidth=0.0,
                           alpha=1.0)
                if 'loc' in plottype:
                    pylab.xlim(xmin, xmax)
                    pylab.ylim(ymin, ymax)
                if 'glob' in plottype:
                    pylab.xlim(xmin, xmax)
                    pylab.ylim(1.0e-10, numpy.nanmax(pixseries) * 1.05)
                if 'full' in plottype:
                    pylab.xlim(xmin, xmax)
                    pylab.ylim(1.0e-10, ymax * 1.05)

# render plot

        if cmdLine:
            pylab.show()
        else:
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
        if plotfile.lower() != 'none':
            pylab.savefig(plotfile)

# stop time

    if status == 0:
        kepmsg.clock('KEPPIXSERIES ended at', logfile, verbose)

    return
Exemple #18
0
def kephalophot(infile,
                outfile,
                plotfile,
                plottype,
                filter,
                function,
                cutoff,
                clobber,
                verbose,
                logfile,
                status,
                cmdLine=False):

    # input arguments

    status = 0
    seterr(all="ignore")

    # log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPHALOPHOT -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'plotfile=' + plotfile + ' '
    call += 'plottype=' + plottype + ' '
    filt = 'n'
    if (filter): filt = 'y'
    call += 'filter=' + filt + ' '
    call += 'function=' + function + ' '
    call += 'cutoff=' + str(cutoff) + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    # start time

    kepmsg.clock('KEPHALOPHOT started at', logfile, verbose)

    # test log file

    logfile = kepmsg.test(logfile)

    # clobber output file

    if clobber: status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = 'ERROR -- KEPHALOPHOT: ' + outfile + ' exists. Use --clobber'
        status = kepmsg.err(logfile, message, verbose)

# open TPF FITS file

    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \
            kepio.readTPF(infile,'TIME',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \
            kepio.readTPF(infile,'TIMECORR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \
            kepio.readTPF(infile,'CADENCENO',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \
            kepio.readTPF(infile,'FLUX',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \
            kepio.readTPF(infile,'FLUX_ERR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, qual, status = \
            kepio.readTPF(infile,'QUALITY',logfile,verbose)

# read mask defintion data from TPF file

    if status == 0:
        maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition(
            infile, logfile, verbose)

# print target data

    if status == 0:
        print('')
        print('      KepID:  %s' % kepid)
        print(' RA (J2000):  %s' % ra)
        print('Dec (J2000): %s' % dec)
        print('     KepMag:  %s' % kepmag)
        print('   SkyGroup:    %2s' % skygroup)
        print('     Season:    %2s' % str(season))
        print('    Channel:    %2s' % channel)
        print('     Module:    %2s' % module)
        print('     Output:     %1s' % output)
        print('')

# how many quality = 0 rows? how many pixels?

    if status == 0:
        np = ydim * xdim
        nrows = len(fluxpixels)
        npts = 0
        for i in range(nrows):
            if qual[i] < 1e4 and \
                    numpy.isfinite(barytime[i]) and \
                    numpy.isfinite(fluxpixels[i,ydim*xdim/2]):
                npts += 1
        time = empty((npts))
        timecorr = empty((npts))
        cadenceno = empty((npts))
        quality = empty((npts))
        pixseries = zeros((npts, np))
        errseries = zeros((npts, np))
        # pixseries = empty((ydim,xdim,npts))
        # errseries = empty((ydim,xdim,npts))

# construct output light curves

    if status == 0:
        for i in range(np):
            npts = 0
            for j in range(nrows):
                if qual[j] < 1e4 and \
                numpy.isfinite(barytime[j]) and \
                numpy.isfinite(fluxpixels[j,i]):
                    time[npts] = barytime[j]
                    timecorr[npts] = tcorr[j]
                    cadenceno[npts] = cadno[j]
                    quality[npts] = qual[j]
                    pixseries[npts, i] = fluxpixels[j, i]
                    errseries[npts, i] = errpixels[j, i]
                    npts += 1

# define data sampling

    if status == 0 and filter:
        tpf, status = kepio.openfits(infile, 'readonly', logfile, verbose)
    if status == 0 and filter:
        cadence, status = kepkey.cadence(tpf[1], infile, logfile, verbose)
        tr = 1.0 / (cadence / 86400)
        timescale = 1.0 / (cutoff / tr)

# define convolution function

    if status == 0 and filter:
        if function == 'boxcar':
            filtfunc = numpy.ones(numpy.ceil(timescale))
        elif function == 'gauss':
            timescale /= 2
            dx = numpy.ceil(timescale * 10 + 1)
            filtfunc = kepfunc.gauss()
            filtfunc = filtfunc([1.0, dx / 2 - 1.0, timescale],
                                linspace(0, dx - 1, dx))
        elif function == 'sinc':
            dx = numpy.ceil(timescale * 12 + 1)
            fx = linspace(0, dx - 1, dx)
            fx = fx - dx / 2 + 0.5
            fx /= timescale
            filtfunc = numpy.sinc(fx)
        filtfunc /= numpy.sum(filtfunc)

# pad time series at both ends with noise model

    if status == 0 and filter:
        for i in range(ydim):
            for j in range(xdim):
                ave, sigma = kepstat.stdev(pixseries[i, j, :len(filtfunc)])
                padded = numpy.append(kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                            numpy.ones(len(filtfunc)) * sigma), pixseries[i,j,:])
                ave, sigma = kepstat.stdev(pixseries[i, j, -len(filtfunc):])
                padded = numpy.append(padded, kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                                    numpy.ones(len(filtfunc)) * sigma))

                # convolve data

                if status == 0:
                    convolved = convolve(padded, filtfunc, 'same')

# remove padding from the output array

                if status == 0:
                    outdata = convolved[len(filtfunc):-len(filtfunc)]

# subtract low frequencies

                if status == 0:
                    outmedian = median(outdata)
                    pixseries[i,
                              j, :] = pixseries[i, j, :] - outdata + outmedian

# construct weighted time series
    if status == 0:
        wgt = numpy.ones((np, 3))
        twgt = numpy.ones((np, 3))
        wgt /= sum(wgt, axis=0)
        satlvl = 0.8 * numpy.max(numpy.max(pixseries, axis=1))
        brk1 = 9.7257203
        brk2 = 45.
        ind1 = where(time - time[0] < brk1)
        ind2 = where((time - time[0] >= brk1) & (time - time[0] < brk2))
        ind3 = where(time - time[0] >= brk2)
        z = numpy.array([0.0, 0.0, 0.0])
        for i in range(np):
            if max(pixseries[ind1, i].flatten()) > satlvl or max(
                    pixseries[ind1, i].flatten()) <= 100:
                wgt[i, 0] = 0
                z[0] += 1
            if max(pixseries[ind2, i].flatten()) > satlvl or max(
                    pixseries[ind2, i].flatten()) <= 100:
                wgt[i, 1] = 0
                z[1] += 1
            if max(pixseries[ind3, i].flatten()) > satlvl or max(
                    pixseries[ind3, i].flatten()) <= 100:
                wgt[i, 2] = 0
                z[2] += 1
        print(z)
        print(np - z)
        sf1 = numpy.dot(pixseries[ind1, :], wgt[:, 0]).flatten()
        sf2 = numpy.dot(pixseries[ind2, :], wgt[:, 1]).flatten()
        sf3 = numpy.dot(pixseries[ind3, :], wgt[:, 2]).flatten()
        sf1 /= numpy.median(sf1)
        sf2 /= numpy.median(sf2)
        sf3 /= numpy.median(sf3)
        originalflux = numpy.concatenate([sf1, sf2, sf3])

        #        a=numpy.array([0.0,0.0,0.0])
        #        t=0
        #        ca = numpy.array([0.0,0.0,0.0])
        #        ct = 0
        #        sig1 = numpy.std(sf1)
        #        sig2 = numpy.std(sf2)
        #        sig3 = numpy.std(sf3)
        #        while 1:
        #            j = int(numpy.floor(numpy.random.random()*np))
        #            if sum(wgt[j,:]) == 0: continue
        #            if ct == 1000:
        #                print(ca)
        #                if ca[0] < 333 and ca[1] < 333 and ca[2] < 333: break
        #                ca = numpy.array([0.0,0.0,0.0])
        #                ct = 0
        #            t += 1
        #            ct += 1
        #            wgt /= sum(wgt,axis=0)
        #            twgt=copy(wgt)
        #            twgt[j,:]*=numpy.random.normal(1.0,0.05,3)
        #            twgt /= sum(twgt,axis=0)
        #            tsf1 = numpy.dot(pixseries[ind1,:],twgt[:,0]).flatten()
        #            tsf2 = numpy.dot(pixseries[ind2,:],twgt[:,1]).flatten()
        #            tsf3 = numpy.dot(pixseries[ind3,:],twgt[:,2]).flatten()
        #            tsf1 /= numpy.median(tsf1)
        #            tsf2 /= numpy.median(tsf2)
        #            tsf3 /= numpy.median(tsf3)
        #            tsig1 = numpy.std(tsf1)
        #            tsig2 = numpy.std(tsf2)
        #            tsig3 = numpy.std(tsf3)
        #            if tsig1 < sig1:
        #                wgt[:,0] = twgt[:,0]
        #                sig1 = tsig1
        #                a[0] += 1
        #                ca[0] += 1
        #            if tsig2 < sig2:
        #                wgt[:,1] = twgt[:,1]
        #                sig2 = tsig2
        #                a[1] += 1
        #                ca[1] += 1
        #            if tsig3 < sig3:
        #                wgt[:,2] = twgt[:,2]
        #                sig3 = tsig3
        #                a[2] += 1
        #                ca[2] += 1
        #        print(100*a/t)
        #        sf1 = numpy.dot(pixseries[ind1,:],wgt[:,0]).flatten()
        #        sf2 = numpy.dot(pixseries[ind2,:],wgt[:,1]).flatten()
        #        sf3 = numpy.dot(pixseries[ind3,:],wgt[:,2]).flatten()
        #        sf1 /= numpy.median(sf1)
        #        sf2 /= numpy.median(sf2)
        #        sf3 /= numpy.median(sf3)
        #
        #        a=numpy.array([0.0,0.0,0.0])
        #        t=0
        #        ca = numpy.array([0.0,0.0,0.0])
        #        ct = 0
        #        sig1 = sum(numpy.fabs(sf1[1:]-sf1[:-1]))
        #        sig2 = sum(numpy.fabs(sf2[1:]-sf2[:-1]))
        #        sig3 = sum(numpy.fabs(sf3[1:]-sf3[:-1]))
        #        while 1:
        #            j = int(numpy.floor(numpy.random.random()*np))
        #            if sum(wgt[j,:]) == 0: continue
        #            if ct == 1000:
        #                print(ca)
        #                if ca[0] < 167 and ca[1] < 167 and ca[2] < 167: break#
        #                ca = numpy.array([0.0,0.0,0.0])
        #                ct = 0
        #            t += 1
        #            ct += 1
        #            wgt /= sum(wgt,axis=0)
        #            twgt=copy(wgt)
        #            twgt[j,:]*=numpy.random.normal(1.0,0.05,3)
        #            twgt /= sum(twgt,axis=0)
        #            tsf1 = numpy.dot(pixseries[ind1,:],twgt[:,0]).flatten()
        #            tsf2 = numpy.dot(pixseries[ind2,:],twgt[:,1]).flatten()
        #            tsf3 = numpy.dot(pixseries[ind3,:],twgt[:,2]).flatten()
        #            tsf1 /= numpy.median(tsf1)
        #            tsf2 /= numpy.median(tsf2)
        #            tsf3 /= numpy.median(tsf3)
        #            tsig1 = sum(numpy.fabs(tsf1[1:]-tsf1[:-1]))
        #            tsig2 = sum(numpy.fabs(tsf2[1:]-tsf2[:-1]))
        #            tsig3 = sum(numpy.fabs(tsf3[1:]-tsf3[:-1]))
        #            if tsig1 < sig1:
        #                wgt[:,0] = twgt[:,0]
        #                sig1 = tsig1
        #                a[0] += 1
        #                ca[0] += 1
        #            if tsig2 < sig2:
        #                wgt[:,1] = twgt[:,1]
        #                sig2 = tsig2
        #                a[1] += 1
        #                ca[1] += 1
        #            if tsig3 < sig3:
        #                wgt[:,2] = twgt[:,2]
        #                sig3 = tsig3
        #                a[2] += 1
        #                ca[2] += 1
        #        print(100*a/t)
        #        sf1 = numpy.dot(pixseries[ind1,:],wgt[:,0]).flatten()
        #        sf2 = numpy.dot(pixseries[ind2,:],wgt[:,1]).flatten()
        #        sf3 = numpy.dot(pixseries[ind3,:],wgt[:,2]).flatten()
        #        sf1 /= numpy.median(sf1)
        #        sf2 /= numpy.median(sf2)
        #        sf3 /= numpy.median(sf3)

        a = numpy.array([0.0, 0.0, 0.0])
        t = 0
        ca = numpy.array([0.0, 0.0, 0.0])
        ct = 0
        sig1 = sum(numpy.fabs(sf1[2:] - 2 * sf1[1:-1] + sf1[:-2]))
        sig2 = sum(numpy.fabs(sf2[2:] - 2 * sf2[1:-1] + sf2[:-2]))
        sig3 = sum(numpy.fabs(sf3[2:] - 2 * sf3[1:-1] + sf3[:-2]))
        while 1:
            j = int(numpy.floor(numpy.random.random() * np))
            if sum(wgt[j, :]) == 0: continue
            if ct == 1000:
                print(ca)
                if ca[0] < 20 and ca[1] < 20 and ca[2] < 20: break
                if t > 1000000: break
                ca = numpy.array([0.0, 0.0, 0.0])
                ct = 0
            t += 1
            ct += 1
            wgt /= sum(wgt, axis=0)
            twgt = copy(wgt)
            twgt[j, :] *= numpy.random.normal(1.0, 0.05, 3)
            twgt /= sum(twgt, axis=0)
            tsf1 = numpy.dot(pixseries[ind1, :], twgt[:, 0]).flatten()
            tsf2 = numpy.dot(pixseries[ind2, :], twgt[:, 1]).flatten()
            tsf3 = numpy.dot(pixseries[ind3, :], twgt[:, 2]).flatten()
            tsf1 /= numpy.median(tsf1)
            tsf2 /= numpy.median(tsf2)
            tsf3 /= numpy.median(tsf3)
            tsig1 = sum(numpy.fabs(tsf1[2:] - 2 * tsf1[1:-1] + tsf1[:-2]))
            tsig2 = sum(numpy.fabs(tsf2[2:] - 2 * tsf2[1:-1] + tsf2[:-2]))
            tsig3 = sum(numpy.fabs(tsf3[2:] - 2 * tsf3[1:-1] + tsf3[:-2]))
            if tsig1 < sig1:
                wgt[:, 0] = twgt[:, 0]
                sig1 = tsig1
                a[0] += 1
                ca[0] += 1
            if tsig2 < sig2:
                wgt[:, 1] = twgt[:, 1]
                sig2 = tsig2
                a[1] += 1
                ca[1] += 1
            if tsig3 < sig3:
                wgt[:, 2] = twgt[:, 2]
                sig3 = tsig3
                a[2] += 1
                ca[2] += 1
        print(100 * a / t)
        sf1 = numpy.dot(pixseries[ind1, :], wgt[:, 0]).flatten()
        sf2 = numpy.dot(pixseries[ind2, :], wgt[:, 1]).flatten()
        sf3 = numpy.dot(pixseries[ind3, :], wgt[:, 2]).flatten()
        sf1 /= numpy.median(sf1)
        sf2 /= numpy.median(sf2)
        sf3 /= numpy.median(sf3)

        finalflux = numpy.concatenate([sf1, sf2, sf3])

# construct output file

    if status == 0:
        instruct, status = kepio.openfits(infile, 'readonly', logfile, verbose)
        status = kepkey.history(call, instruct[0], outfile, logfile, verbose)
        hdulist = HDUList(instruct[0])
        cols = []
        cols.append(
            Column(name='TIME',
                   format='D',
                   unit='BJD - 2454833',
                   disp='D12.7',
                   array=time))
        cols.append(
            Column(name='TIMECORR',
                   format='E',
                   unit='d',
                   disp='E13.6',
                   array=timecorr))
        cols.append(
            Column(name='CADENCENO', format='J', disp='I10', array=cadenceno))
        cols.append(Column(name='QUALITY', format='J', array=quality))
        cols.append(
            Column(name='ORGFLUX',
                   format='E',
                   disp='E13.6',
                   array=originalflux))
        cols.append(
            Column(name='FLUX', format='E', disp='E13.6', array=finalflux))
        # for i in range(ydim):
        #     for j in range(xdim):
        #         colname = 'COL%d_ROW%d' % (i+column,j+row)
        #         cols.append(Column(name=colname,format='E',disp='E13.6',array=pixseries[i,j,:]))
        hdu1 = new_table(ColDefs(cols))
        try:
            hdu1.header.update('INHERIT', True, 'inherit the primary header')
        except:
            status = 0
        try:
            hdu1.header.update('EXTNAME', 'PIXELSERIES', 'name of extension')
        except:
            status = 0
        try:
            hdu1.header.update(
                'EXTVER', instruct[1].header['EXTVER'],
                'extension version number (not format version)')
        except:
            status = 0
        try:
            hdu1.header.update('TELESCOP', instruct[1].header['TELESCOP'],
                               'telescope')
        except:
            status = 0
        try:
            hdu1.header.update('INSTRUME', instruct[1].header['INSTRUME'],
                               'detector type')
        except:
            status = 0
        try:
            hdu1.header.update('OBJECT', instruct[1].header['OBJECT'],
                               'string version of KEPLERID')
        except:
            status = 0
        try:
            hdu1.header.update('KEPLERID', instruct[1].header['KEPLERID'],
                               'unique Kepler target identifier')
        except:
            status = 0
        try:
            hdu1.header.update('RADESYS', instruct[1].header['RADESYS'],
                               'reference frame of celestial coordinates')
        except:
            status = 0
        try:
            hdu1.header.update('RA_OBJ', instruct[1].header['RA_OBJ'],
                               '[deg] right ascension from KIC')
        except:
            status = 0
        try:
            hdu1.header.update('DEC_OBJ', instruct[1].header['DEC_OBJ'],
                               '[deg] declination from KIC')
        except:
            status = 0
        try:
            hdu1.header.update('EQUINOX', instruct[1].header['EQUINOX'],
                               'equinox of celestial coordinate system')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEREF', instruct[1].header['TIMEREF'],
                               'barycentric correction applied to times')
        except:
            status = 0
        try:
            hdu1.header.update('TASSIGN', instruct[1].header['TASSIGN'],
                               'where time is assigned')
        except:
            status = 0
        try:
            hdu1.header.update('TIMESYS', instruct[1].header['TIMESYS'],
                               'time system is barycentric JD')
        except:
            status = 0
        try:
            hdu1.header.update('BJDREFI', instruct[1].header['BJDREFI'],
                               'integer part of BJD reference date')
        except:
            status = 0
        try:
            hdu1.header.update('BJDREFF', instruct[1].header['BJDREFF'],
                               'fraction of the day in BJD reference date')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEUNIT', instruct[1].header['TIMEUNIT'],
                               'time unit for TIME, TSTART and TSTOP')
        except:
            status = 0
        try:
            hdu1.header.update('TSTART', instruct[1].header['TSTART'],
                               'observation start time in BJD-BJDREF')
        except:
            status = 0
        try:
            hdu1.header.update('TSTOP', instruct[1].header['TSTOP'],
                               'observation stop time in BJD-BJDREF')
        except:
            status = 0
        try:
            hdu1.header.update('LC_START', instruct[1].header['LC_START'],
                               'mid point of first cadence in MJD')
        except:
            status = 0
        try:
            hdu1.header.update('LC_END', instruct[1].header['LC_END'],
                               'mid point of last cadence in MJD')
        except:
            status = 0
        try:
            hdu1.header.update('TELAPSE', instruct[1].header['TELAPSE'],
                               '[d] TSTOP - TSTART')
        except:
            status = 0
        try:
            hdu1.header.update('LIVETIME', instruct[1].header['LIVETIME'],
                               '[d] TELAPSE multiplied by DEADC')
        except:
            status = 0
        try:
            hdu1.header.update('EXPOSURE', instruct[1].header['EXPOSURE'],
                               '[d] time on source')
        except:
            status = 0
        try:
            hdu1.header.update('DEADC', instruct[1].header['DEADC'],
                               'deadtime correction')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEPIXR', instruct[1].header['TIMEPIXR'],
                               'bin time beginning=0 middle=0.5 end=1')
        except:
            status = 0
        try:
            hdu1.header.update('TIERRELA', instruct[1].header['TIERRELA'],
                               '[d] relative time error')
        except:
            status = 0
        try:
            hdu1.header.update('TIERABSO', instruct[1].header['TIERABSO'],
                               '[d] absolute time error')
        except:
            status = 0
        try:
            hdu1.header.update('INT_TIME', instruct[1].header['INT_TIME'],
                               '[s] photon accumulation time per frame')
        except:
            status = 0
        try:
            hdu1.header.update('READTIME', instruct[1].header['READTIME'],
                               '[s] readout time per frame')
        except:
            status = 0
        try:
            hdu1.header.update('FRAMETIM', instruct[1].header['FRAMETIM'],
                               '[s] frame time (INT_TIME + READTIME)')
        except:
            status = 0
        try:
            hdu1.header.update('NUM_FRM', instruct[1].header['NUM_FRM'],
                               'number of frames per time stamp')
        except:
            status = 0
        try:
            hdu1.header.update('TIMEDEL', instruct[1].header['TIMEDEL'],
                               '[d] time resolution of data')
        except:
            status = 0
        try:
            hdu1.header.update('DATE-OBS', instruct[1].header['DATE-OBS'],
                               'TSTART as UTC calendar date')
        except:
            status = 0
        try:
            hdu1.header.update('DATE-END', instruct[1].header['DATE-END'],
                               'TSTOP as UTC calendar date')
        except:
            status = 0
        try:
            hdu1.header.update('BACKAPP', instruct[1].header['BACKAPP'],
                               'background is subtracted')
        except:
            status = 0
        try:
            hdu1.header.update('DEADAPP', instruct[1].header['DEADAPP'],
                               'deadtime applied')
        except:
            status = 0
        try:
            hdu1.header.update('VIGNAPP', instruct[1].header['VIGNAPP'],
                               'vignetting or collimator correction applied')
        except:
            status = 0
        try:
            hdu1.header.update('GAIN', instruct[1].header['GAIN'],
                               '[electrons/count] channel gain')
        except:
            status = 0
        try:
            hdu1.header.update('READNOIS', instruct[1].header['READNOIS'],
                               '[electrons] read noise')
        except:
            status = 0
        try:
            hdu1.header.update('NREADOUT', instruct[1].header['NREADOUT'],
                               'number of read per cadence')
        except:
            status = 0
        try:
            hdu1.header.update('TIMSLICE', instruct[1].header['TIMSLICE'],
                               'time-slice readout sequence section')
        except:
            status = 0
        try:
            hdu1.header.update('MEANBLCK', instruct[1].header['MEANBLCK'],
                               '[count] FSW mean black level')
        except:
            status = 0
        hdulist.append(hdu1)
        hdulist.writeto(outfile)
        status = kepkey.new('EXTNAME', 'APERTURE', 'name of extension',
                            instruct[2], outfile, logfile, verbose)
        pyfits.append(outfile, instruct[2].data, instruct[2].header)
        wgt1 = numpy.reshape(wgt[:, 0], (ydim, xdim))
        wgt2 = numpy.reshape(wgt[:, 1], (ydim, xdim))
        wgt3 = numpy.reshape(wgt[:, 2], (ydim, xdim))
        hdu3 = ImageHDU(data=wgt1, header=instruct[2].header, name='WEIGHTS1')
        hdu4 = ImageHDU(data=wgt2, header=instruct[2].header, name='WEIGHTS2')
        hdu5 = ImageHDU(data=wgt3, header=instruct[2].header, name='WEIGHTS3')
        pyfits.append(outfile, hdu3.data, hdu3.header)
        pyfits.append(outfile, hdu4.data, hdu4.header)
        pyfits.append(outfile, hdu5.data, hdu5.header)
        status = kepio.closefits(instruct, logfile, verbose)
    else:
        message = 'WARNING -- KEPHALOPHOT: output FITS file requires > 999 columns. Non-compliant with FITS convention.'

        kepmsg.warn(logfile, message)

# plot style

    if status == 0:
        try:
            params = {
                'backend': 'png',
                'axes.linewidth': 2.0,
                'axes.labelsize': 32,
                'axes.font': 'sans-serif',
                'axes.fontweight': 'bold',
                'text.fontsize': 8,
                'legend.fontsize': 8,
                'xtick.labelsize': 12,
                'ytick.labelsize': 12
            }
            pylab.rcParams.update(params)
        except:
            pass

# plot pixel array

    fmin = 1.0e33
    fmax = -1.033
    if status == 0:
        pylab.figure(num=None, figsize=[12, 12])
        pylab.clf()
        dx = 0.93  #/ xdim
        dy = 0.94  #/ ydim
        ax = pylab.axes([0.06, 0.05, 0.93, 0.94])
        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().xaxis.set_major_locator(
            matplotlib.ticker.MaxNLocator(integer=True))
        pylab.gca().yaxis.set_major_locator(
            matplotlib.ticker.MaxNLocator(integer=True))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)
        pylab.xlim(numpy.min(pixcoord1) - 0.5, numpy.max(pixcoord1) + 0.5)
        pylab.ylim(numpy.min(pixcoord2) - 0.5, numpy.max(pixcoord2) + 0.5)
        pylab.xlabel('time', {'color': 'k'})
        pylab.ylabel('arbitrary flux', {'color': 'k'})
        tmin = amin(time)
        tmax = amax(time)
        try:
            numpy.isfinite(amin(finalflux))
            numpy.isfinite(amin(finalflux))
            fmin = amin(finalflux)
            fmax = amax(finalflux)
        except:
            ugh = 1
        xmin = tmin - (tmax - tmin) / 40
        xmax = tmax + (tmax - tmin) / 40
        ymin = fmin - (fmax - fmin) / 20
        ymax = fmax + (fmax - fmin) / 20
        pylab.axes([0.06, 0.05, dx, dy])
        pylab.setp(pylab.gca(), xticklabels=[], yticklabels=[])
        ptime = time * 1.0
        ptime = numpy.insert(ptime, [0], ptime[0])
        ptime = numpy.append(ptime, ptime[-1])
        pflux = finalflux * 1.0
        pflux = numpy.insert(pflux, [0], -1000.0)
        pflux = numpy.append(pflux, -1000.0)
        pylab.plot(time,
                   finalflux,
                   color='#0000ff',
                   linestyle='-',
                   linewidth=0.5)
        pylab.fill(ptime, pflux, fc='#FFF380', linewidth=0.0, alpha=1.0)
        if 'loc' in plottype:
            pylab.xlim(xmin, xmax)
            pylab.ylim(ymin, ymax)
        if 'glob' in plottype:
            pylab.xlim(xmin, xmax)
            pylab.ylim(1.0e-10, numpy.nanmax(pixseries) * 1.05)
        if 'full' in plottype:
            pylab.xlim(xmin, xmax)
            pylab.ylim(1.0e-10, ymax * 1.05)

# render plot

        if cmdLine:
            pylab.show()
        else:
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
        if plotfile.lower() != 'none':
            pylab.savefig(plotfile)

# stop time

    if status == 0:
        kepmsg.clock('KEPHALOPHOT ended at', logfile, verbose)

    return
Exemple #19
0
def kepdiffim(infile,
              outfile,
              plotfile,
              imscale,
              colmap,
              filter,
              function,
              cutoff,
              clobber,
              verbose,
              logfile,
              status,
              cmdLine=False):

    # input arguments

    status = 0
    seterr(all="ignore")

    # log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPDIFFIM -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'plotfile=' + plotfile + ' '
    call += 'imscale=' + imscale + ' '
    call += 'colmap=' + colmap + ' '
    filt = 'n'
    if (filter): filt = 'y'
    call += 'filter=' + filt + ' '
    call += 'function=' + function + ' '
    call += 'cutoff=' + str(cutoff) + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    # start time

    kepmsg.clock('KEPDIFFIM started at: ', logfile, verbose)

    # test log file

    logfile = kepmsg.test(logfile)

    # clobber output file

    if clobber: status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = 'ERROR -- KEPDIFFIM: ' + outfile + ' exists. Use --clobber'
        status = kepmsg.err(logfile, message, verbose)

# reference color map

    if colmap == 'browse':
        status = cmap_plot()

# open TPF FITS file

    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, barytime, status = \
            kepio.readTPF(infile,'TIME',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, tcorr, status = \
            kepio.readTPF(infile,'TIMECORR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, cadno, status = \
            kepio.readTPF(infile,'CADENCENO',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, fluxpixels, status = \
            kepio.readTPF(infile,'FLUX',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, errpixels, status = \
            kepio.readTPF(infile,'FLUX_ERR',logfile,verbose)
    if status == 0:
        kepid, channel, skygroup, module, output, quarter, season, \
            ra, dec, column, row, kepmag, xdim, ydim, qual, status = \
            kepio.readTPF(infile,'QUALITY',logfile,verbose)

# read mask defintion data from TPF file

    if status == 0:
        maskimg, pixcoord1, pixcoord2, status = kepio.readMaskDefinition(
            infile, logfile, verbose)

# print target data

    if status == 0:
        print('')
        print('      KepID:  %s' % kepid)
        print(' RA (J2000):  %s' % ra)
        print('Dec (J2000): %s' % dec)
        print('     KepMag:  %s' % kepmag)
        print('   SkyGroup:    %2s' % skygroup)
        print('     Season:    %2s' % str(season))
        print('    Channel:    %2s' % channel)
        print('     Module:    %2s' % module)
        print('     Output:     %1s' % output)
        print('')

# how many quality = 0 rows?

    if status == 0:
        npts = 0
        nrows = len(fluxpixels)
        for i in range(nrows):
            if qual[i] == 0 and \
                    numpy.isfinite(barytime[i]) and \
                    numpy.isfinite(fluxpixels[i,ydim*xdim/2]):
                npts += 1
        time = empty((npts))
        timecorr = empty((npts))
        cadenceno = empty((npts))
        quality = empty((npts))
        pixseries = empty((ydim * xdim, npts))
        errseries = empty((ydim * xdim, npts))

# construct output light curves

    if status == 0:
        np = 0
        for i in range(ydim * xdim):
            npts = 0
            for k in range(nrows):
                if qual[k] == 0 and \
                        numpy.isfinite(barytime[k]) and \
                        numpy.isfinite(fluxpixels[k,ydim*xdim/2]):
                    time[npts] = barytime[k]
                    timecorr[npts] = tcorr[k]
                    cadenceno[npts] = cadno[k]
                    quality[npts] = qual[k]
                    pixseries[i, npts] = fluxpixels[k, np]
                    errseries[i, npts] = errpixels[k, np]
                    npts += 1
            np += 1

# define data sampling

    if status == 0 and filter:
        tpf, status = kepio.openfits(infile, 'readonly', logfile, verbose)
    if status == 0 and filter:
        cadence, status = kepkey.cadence(tpf[1], infile, logfile, verbose)
        tr = 1.0 / (cadence / 86400)
        timescale = 1.0 / (cutoff / tr)

# define convolution function

    if status == 0 and filter:
        if function == 'boxcar':
            filtfunc = numpy.ones(numpy.ceil(timescale))
        elif function == 'gauss':
            timescale /= 2
            dx = numpy.ceil(timescale * 10 + 1)
            filtfunc = kepfunc.gauss()
            filtfunc = filtfunc([1.0, dx / 2 - 1.0, timescale],
                                linspace(0, dx - 1, dx))
        elif function == 'sinc':
            dx = numpy.ceil(timescale * 12 + 1)
            fx = linspace(0, dx - 1, dx)
            fx = fx - dx / 2 + 0.5
            fx /= timescale
            filtfunc = numpy.sinc(fx)
        filtfunc /= numpy.sum(filtfunc)

# pad time series at both ends with noise model

    if status == 0 and filter:
        for i in range(ydim * xdim):
            ave, sigma = kepstat.stdev(pixseries[i, :len(filtfunc)])
            padded = numpy.append(kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                        numpy.ones(len(filtfunc)) * sigma), pixseries[i,:])
            ave, sigma = kepstat.stdev(pixseries[i, -len(filtfunc):])
            padded = numpy.append(padded, kepstat.randarray(numpy.ones(len(filtfunc)) * ave, \
                                                                numpy.ones(len(filtfunc)) * sigma))

            # convolve data

            if status == 0:
                convolved = convolve(padded, filtfunc, 'same')

# remove padding from the output array

            if status == 0:
                outdata = convolved[len(filtfunc):-len(filtfunc)]

# subtract low frequencies

            if status == 0:
                outmedian = median(outdata)
                pixseries[i, :] = pixseries[i, :] - outdata + outmedian

# sum pixels over cadence

    if status == 0:
        np = 0
        nrows = len(fluxpixels)
        pixsum = zeros((ydim * xdim))
        errsum = zeros((ydim * xdim))
        for i in range(npts):
            if quality[i] == 0:
                pixsum += pixseries[:, i]
                errsum += errseries[:, i]**2
                np += 1
        pixsum /= np
        errsum = sqrt(errsum) / np

# calculate standard deviation pixels

    if status == 0:
        pixvar = zeros((ydim * xdim))
        for i in range(npts):
            if quality[i] == 0:
                pixvar += (pixsum - pixseries[:, i] / errseries[:, i])**2
        pixvar = numpy.sqrt(pixvar)

# median pixel errors

    if status == 0:
        errmed = empty((ydim * xdim))
        for i in range(ydim * xdim):
            errmed[i] = numpy.median(errseries[:, i])

# calculate chi distribution pixels

    if status == 0:
        pixdev = zeros((ydim * xdim))
        for i in range(npts):
            if quality[i] == 0:
                pixdev += ((pixsum - pixseries[:, i]) / pixsum)**2
        pixdev = numpy.sqrt(pixdev)

#        pixdev = numpy.sqrt(pixvar) / errsum #errmed

# image scale and intensity limits

    if status == 0:
        pixsum_pl, zminsum, zmaxsum = kepplot.intScale1D(pixsum, imscale)
        pixvar_pl, zminvar, zmaxvar = kepplot.intScale1D(pixvar, imscale)
        pixdev_pl, zmindev, zmaxdev = kepplot.intScale1D(pixdev, imscale)

# construct output summed image

    if status == 0:
        imgsum = empty((ydim, xdim))
        imgvar = empty((ydim, xdim))
        imgdev = empty((ydim, xdim))
        imgsum_pl = empty((ydim, xdim))
        imgvar_pl = empty((ydim, xdim))
        imgdev_pl = empty((ydim, xdim))
        n = 0
        for i in range(ydim):
            for j in range(xdim):
                imgsum[i, j] = pixsum[n]
                imgvar[i, j] = pixvar[n]
                imgdev[i, j] = pixdev[n]
                imgsum_pl[i, j] = pixsum_pl[n]
                imgvar_pl[i, j] = pixvar_pl[n]
                imgdev_pl[i, j] = pixdev_pl[n]
                n += 1

# construct output file

    if status == 0:
        instruct, status = kepio.openfits(infile, 'readonly', logfile, verbose)
        status = kepkey.history(call, instruct[0], outfile, logfile, verbose)
        hdulist = HDUList(instruct[0])
        hdulist.writeto(outfile)
        status = kepkey.new('EXTNAME', 'FLUX', 'name of extension',
                            instruct[2], outfile, logfile, verbose)
        pyfits.append(outfile, imgsum, instruct[2].header)
        status = kepkey.new('EXTNAME', 'CHI', 'name of extension', instruct[2],
                            outfile, logfile, verbose)
        pyfits.append(outfile, imgvar, instruct[2].header)
        status = kepkey.new('EXTNAME', 'STDDEV', 'name of extension',
                            instruct[2], outfile, logfile, verbose)
        pyfits.append(outfile, imgdev, instruct[2].header)
        status = kepkey.new('EXTNAME', 'APERTURE', 'name of extension',
                            instruct[2], outfile, logfile, verbose)
        pyfits.append(outfile, instruct[2].data, instruct[2].header)
        status = kepio.closefits(instruct, logfile, verbose)

# pixel limits of the subimage

    if status == 0:
        ymin = row
        ymax = ymin + ydim
        xmin = column
        xmax = xmin + xdim

        # plot limits for summed image

        ymin = float(ymin) - 0.5
        ymax = float(ymax) - 0.5
        xmin = float(xmin) - 0.5
        xmax = float(xmax) - 0.5

        # plot style

        try:
            params = {
                'backend': 'png',
                'axes.linewidth': 2.5,
                'axes.labelsize': 24,
                'axes.font': 'sans-serif',
                'axes.fontweight': 'bold',
                'text.fontsize': 12,
                'legend.fontsize': 12,
                'xtick.labelsize': 10,
                'ytick.labelsize': 10
            }
            pylab.rcParams.update(params)
        except:
            'ERROR -- KEPDIFFIM: install latex for scientific plotting'
            status = 1

    if status == 0:
        plotimage(imgsum_pl, imgvar_pl, imgdev_pl, zminsum, zminvar, zmindev,
                  zmaxsum, zmaxvar, zmaxdev, xmin, xmax, ymin, ymax, colmap,
                  plotfile, cmdLine)

# stop time

    kepmsg.clock('KEPDIFFIM ended at: ', logfile, verbose)

    return
Exemple #20
0
def kepbinary(infile,outfile,datacol,m1,m2,r1,r2,period,bjd0,eccn,omega,inclination,
              c1,c2,c3,c4,albedo,depth,contamination,gamma,fitparams,eclipses,dopboost,
              tides,job,clobber,verbose,logfile,status): 

# startup parameters

    status = 0
    labelsize = 24; ticksize = 16; xsize = 17; ysize = 7
    lcolor = '#0000ff'; lwidth = 1.0; fcolor = '#ffff00'; falpha = 0.2

# log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPBINARY -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+datacol+' '
    call += 'm1='+str(m1)+' '
    call += 'm2='+str(m2)+' '
    call += 'r1='+str(r1)+' '
    call += 'r2='+str(r2)+' '
    call += 'period='+str(period)+' '
    call += 'bjd0='+str(bjd0)+' '
    call += 'eccn='+str(eccn)+' '
    call += 'omega='+str(omega)+' '
    call += 'inclination='+str(inclination)+' '
    call += 'c1='+str(c1)+' '
    call += 'c2='+str(c2)+' '
    call += 'c3='+str(c3)+' '
    call += 'c4='+str(c4)+' '
    call += 'albedo='+str(albedo)+' '
    call += 'depth='+str(depth)+' '
    call += 'contamination='+str(contamination)+' '
    call += 'gamma='+str(gamma)+' '
    call += 'fitparams='+str(fitparams)+' '
    eclp = 'n'
    if (eclipses): eclp = 'y'
    call += 'eclipses='+eclp+ ' '
    boost = 'n'
    if (dopboost): boost = 'y'
    call += 'dopboost='+boost+ ' '
    distort = 'n'
    if (tides): distort = 'y'
    call += 'tides='+distort+ ' '
    call += 'job='+str(job)+ ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

# start time

    kepmsg.clock('KEPBINARY started at',logfile,verbose)

# test log file

    logfile = kepmsg.test(logfile)

# check and format the list of fit parameters

    if status == 0 and job == 'fit':
        allParams = [m1,m2,r1,r2,period,bjd0,eccn,omega,inclination]
        allNames = ['m1','m2','r1','r2','period','bjd0','eccn','omega','inclination']
        fitparams = re.sub('\|',',',fitparams.strip())
        fitparams = re.sub('\.',',',fitparams.strip())
        fitparams = re.sub(';',',',fitparams.strip())
        fitparams = re.sub(':',',',fitparams.strip())
        fitparams = re.sub('\s+',',',fitparams.strip())
        fitparams, status = kepio.parselist(fitparams,logfile,verbose)
        for fitparam in fitparams:
            if fitparam.strip() not in allNames:
                message = 'ERROR -- KEPBINARY: unknown field in list of fit parameters'
                status = kepmsg.err(logfile,message,verbose)

# clobber output file

    if status == 0:
        if clobber: status = kepio.clobber(outfile,logfile,verbose)
        if kepio.fileexists(outfile): 
            message = 'ERROR -- KEPBINARY: ' + outfile + ' exists. Use --clobber'
            status = kepmsg.err(logfile,message,verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
    if status == 0:
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# check the data column exists

    if status == 0:
        try:
            instr[1].data.field(datacol)
        except:
            message = 'ERROR -- KEPBINARY: ' + datacol + ' column does not exist in ' + infile + '[1]'
            status = kepmsg.err(logfile,message,verbose)

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

# read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            try:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('barytime')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            except:
                for i in range(len(table.field(0))):
                    if numpy.isfinite(table.field('time')[i]) and \
                            numpy.isfinite(table.field(datacol)[i]):
                        table[naxis2] = table[i]
                        naxis2 += 1
                        instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)
 
# read table columns

    if status == 0:
	try:
            time = instr[1].data.field('barytime')
	except:
            time, status = kepio.readfitscol(infile,instr[1].data,'time',logfile,verbose)
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        time = time + bjdref
        indata = indata / cadenom

# limb-darkening cofficients

    if status == 0:
        limbdark = numpy.array([c1,c2,c3,c4],dtype='float32')

# time details for model

    if status == 0:
        npt = len(time)
        exptime = numpy.zeros((npt),dtype='float64')
        dtype = numpy.zeros((npt),dtype='int')
        for i in range(npt):
            try:
                exptime[i] = time[i+1] - time[i]
            except:
                exptime[i] = time[i] - time[i-1]

# calculate binary model

    if status == 0:
        tmodel = kepsim.transitModel(1.0,m1,m2,r1,r2,period,inclination,bjd0,eccn,omega,depth,
                                     albedo,c1,c2,c3,c4,gamma,contamination,npt,time,exptime,
                                     dtype,eclipses,dopboost,tides)

# re-normalize binary model to data

    if status == 0 and (job == 'overlay' or job == 'fit'):
        dmedian = numpy.median(indata)
        tmodel = tmodel / numpy.median(tmodel) * dmedian

# define arrays of floating and frozen parameters

    if status == 0 and job =='fit':
        params = []; paramNames = []; arguments = []; argNames = []
        for i in range(len(allNames)):
            if allNames[i] in fitparams:
                params.append(allParams[i])
                paramNames.append(allNames[i])
            else:
                arguments.append(allParams[i])
                argNames.append(allNames[i])
        params.append(dmedian)
        params = numpy.array(params,dtype='float32')

# subtract model from data

    if status == 0 and job == 'fit':
        deltam = numpy.abs(indata - tmodel)

# fit statistics

    if status == 0 and job == 'fit':
        aveDelta = numpy.sum(deltam) / npt
        chi2 = math.sqrt(numpy.sum((indata - tmodel) * (indata - tmodel) / (npt - len(params))))

# fit model to data using downhill simplex

    if status == 0 and job == 'fit':
        print ''
        print '%4s %11s %11s' % ('iter', 'delta', 'chi^2')
        print '----------------------------'
        print '%4d %.5E %.5E' % (0,aveDelta,chi2)
        bestFit = scipy.optimize.fmin(fitModel,params,args=(paramNames,dmedian,m1,m2,r1,r2,period,bjd0,eccn,
                                                            omega,inclination,depth,albedo,c1,c2,c3,c4,
                                                            gamma,contamination,npt,time,exptime,indata,
                                                            dtype,eclipses,dopboost,tides),maxiter=1e4)

# calculate best fit binary model

    if status == 0 and job == 'fit':
        print ''
        for i in range(len(paramNames)):
            if 'm1' in paramNames[i].lower():
                m1 = bestFit[i]
                print '  M1 = %.3f Msun' % bestFit[i]
            elif 'm2' in paramNames[i].lower():
                m2 = bestFit[i]
                print '  M2 = %.3f Msun' % bestFit[i]
            elif 'r1' in paramNames[i].lower():
                r1 = bestFit[i]
                print '  R1 = %.4f Rsun' % bestFit[i]
            elif 'r2' in paramNames[i].lower():
                r2 = bestFit[i]
                print '  R2 = %.4f Rsun' % bestFit[i]
            elif 'period' in paramNames[i].lower():
                period = bestFit[i]
            elif 'bjd0' in paramNames[i].lower():
                bjd0 = bestFit[i]
                print 'BJD0 = %.8f' % bestFit[i]
            elif 'eccn' in paramNames[i].lower():
                eccn = bestFit[i]
                print '   e = %.3f' % bestFit[i]
            elif 'omega' in paramNames[i].lower():
                omega = bestFit[i]
                print '   w = %.3f deg' % bestFit[i]
            elif 'inclination' in paramNames[i].lower():
                inclination = bestFit[i]
                print '   i = %.3f deg' % bestFit[i]
        flux = bestFit[-1]
        print ''
        tmodel = kepsim.transitModel(flux,m1,m2,r1,r2,period,inclination,bjd0,eccn,omega,depth,
                                     albedo,c1,c2,c3,c4,gamma,contamination,npt,time,exptime,
                                     dtype,eclipses,dopboost,tides)

# subtract model from data

    if status == 0:
        deltaMod = indata - tmodel

# standard deviation of model

    if status == 0:
        stdDev = math.sqrt(numpy.sum((indata - tmodel) * (indata - tmodel)) / npt)

# clean up x-axis unit

    if status == 0:
	time0 = float(int(tstart / 100) * 100.0)
	ptime = time - time0
	xlab = 'BJD $-$ %d' % time0

# clean up y-axis units

    if status == 0:
	nrm = len(str(int(indata.max())))-1
	pout = indata / 10**nrm
	pmod = tmodel / 10**nrm
        pres = deltaMod / stdDev
        if job == 'fit' or job == 'overlay':
            try:
                ylab1 = 'Flux (10$^%d$ e$^-$ s$^{-1}$)' % nrm
                ylab2 = 'Residual ($\sigma$)'
            except:
                ylab1 = 'Flux (10**%d e-/s)' % nrm
                ylab2 = 'Residual (sigma)'
        else:
            ylab1 = 'Normalized Flux'

# dynamic range of model plot

    if status == 0 and job == 'model':
        xmin = ptime.min()
        xmax = ptime.max()
        ymin = tmodel.min()
        ymax = tmodel.max()

# dynamic range of model/data overlay or fit

    if status == 0 and (job == 'overlay' or job == 'fit'):
        xmin = ptime.min()
        xmax = ptime.max()
        ymin = pout.min()
        ymax = pout.max()
        tmin = pmod.min()
        tmax = pmod.max()
        ymin = numpy.array([ymin,tmin]).min()
        ymax = numpy.array([ymax,tmax]).max()
        rmin = pres.min()
        rmax = pres.max()
 
# pad the dynamic range

    if status == 0:
        xr = (xmax - xmin) / 80
        yr = (ymax - ymin) / 40
        if job == 'overlay' or job == 'fit':
            rr = (rmax - rmin) / 40

# set up plot style

    if status == 0:
        labelsize = 24; ticksize = 16; xsize = 17; ysize = 7
        lcolor = '#0000ff'; lwidth = 1.0; fcolor = '#ffff00'; falpha = 0.2
        params = {'backend': 'png',
                  'axes.linewidth': 2.5,
                  'axes.labelsize': 24,
                  'axes.font': 'sans-serif',
                  'axes.fontweight' : 'bold',
                  'text.fontsize': 12,
                  'legend.fontsize': 12,
                  'xtick.labelsize': 16,
                  'ytick.labelsize': 16}
        pylab.rcParams.update(params)
        pylab.figure(figsize=[14,10])
        pylab.clf()

# main plot window

        ax = pylab.axes([0.05,0.3,0.94,0.68])
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

# plot model time series 

    if status == 0 and job == 'model':
        pylab.plot(ptime,tmodel,color='#0000ff',linestyle='-',linewidth=1.0)
        ptime = numpy.insert(ptime,[0.0],ptime[0])
        ptime = numpy.append(ptime,ptime[-1])
        tmodel = numpy.insert(tmodel,[0.0],0.0)
        tmodel = numpy.append(tmodel,0.0)
        pylab.fill(ptime,tmodel,fc='#ffff00',linewidth=0.0,alpha=0.2)

# plot data time series and best fit

    if status == 0 and (job == 'overlay' or job == 'fit'):
        pylab.plot(ptime,pout,color='#0000ff',linestyle='-',linewidth=1.0)
        ptime = numpy.insert(ptime,[0.0],ptime[0])
        ptime = numpy.append(ptime,ptime[-1])
        pout = numpy.insert(pout,[0],0.0)
        pout = numpy.append(pout,0.0)
        pylab.fill(ptime,pout,fc='#ffff00',linewidth=0.0,alpha=0.2)
        pylab.plot(ptime[1:-1],pmod,color='r',linestyle='-',linewidth=2.0)

# ranges and labels

    if status == 0:
        pylab.xlim(xmin-xr,xmax+xr)
        pylab.ylim(ymin-yr,ymax+yr)
        pylab.xlabel(xlab, {'color' : 'k'})
        pylab.ylabel(ylab1, {'color' : 'k'})

# residual plot window

    if status == 0 and (job == 'overlay' or job == 'fit'):
        ax = pylab.axes([0.05,0.07,0.94,0.23])
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

# plot residual time series 

    if status == 0 and (job == 'overlay' or job == 'fit'):
        pylab.plot([ptime[0],ptime[-1]],[0.0,0.0],color='r',linestyle='--',linewidth=1.0)
        pylab.plot([ptime[0],ptime[-1]],[-1.0,-1.0],color='r',linestyle='--',linewidth=1.0)
        pylab.plot([ptime[0],ptime[-1]],[1.0,1.0],color='r',linestyle='--',linewidth=1.0)
        pylab.plot(ptime[1:-1],pres,color='#0000ff',linestyle='-',linewidth=1.0)
        pres = numpy.insert(pres,[0],rmin)
        pres = numpy.append(pres,rmin)
        pylab.fill(ptime,pres,fc='#ffff00',linewidth=0.0,alpha=0.2)

# ranges and labels of residual time series

    if status == 0 and (job == 'overlay' or job == 'fit'):
        pylab.xlim(xmin-xr,xmax+xr)
        pylab.ylim(rmin-rr,rmax+rr)
        pylab.xlabel(xlab, {'color' : 'k'})
        pylab.ylabel(ylab2, {'color' : 'k'})

# display the plot

    if status == 0:
        pylab.draw()
Exemple #21
0
def kepclip(infile,
            outfile,
            ranges,
            plot,
            plotcol,
            clobber,
            verbose,
            logfile,
            status,
            cmdLine=False):

    # startup parameters

    status = 0
    labelsize = 32
    ticksize = 24
    xsize = 18
    ysize = 10
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

    # log the call

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile, hashline, verbose)
    call = 'KEPCLIP -- '
    call += 'infile=' + infile + ' '
    call += 'outfile=' + outfile + ' '
    call += 'ranges=' + ranges + ' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot=' + plotit + ' '
    call += 'plotcol=' + plotcol + ' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber=' + overwrite + ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose=' + chatter + ' '
    call += 'logfile=' + logfile
    kepmsg.log(logfile, call + '\n', verbose)

    # start time

    kepmsg.clock('KEPCLIP started at', logfile, verbose)

    # test log file

    logfile = kepmsg.test(logfile)

    # clobber output file

    if clobber: status = kepio.clobber(outfile, logfile, verbose)
    if kepio.fileexists(outfile):
        message = 'ERROR -- KEPCLIP: ' + outfile + ' exists. Use --clobber'
        status = kepmsg.err(logfile, message, verbose)

# time ranges for region

    if status == 0:
        t1 = []
        t2 = []
        t1, t2, status = kepio.timeranges(ranges, logfile, verbose)

# open input file

    if status == 0:
        instr, status = kepio.openfits(infile, 'readonly', logfile, verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(
            instr, infile, logfile, verbose, status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

# fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr, file, logfile, verbose)

# input data

    if status == 0:
        table = instr[1].data

# read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile, table, logfile, verbose)
    if status == 0:
        flux, status = kepio.readfitscol(infile, table, plotcol, logfile,
                                         verbose)
    if status == 0:
        barytime = barytime + bjdref
        if 'flux' in plotcol.lower():
            flux = flux / cadenom

# filter input data table

    if status == 0:
        naxis2 = 0
        work1 = array([], 'float64')
        work2 = array([], 'float32')
        for i in range(len(barytime)):
            if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i])
                    and flux[i] != 0.0):
                reject = False
                for j in range(len(t1)):
                    if (barytime[i] >= t1[j] and barytime[i] <= t2[j]):
                        reject = True
                if not reject:
                    table[naxis2] = table[i]
                    work1 = append(work1, barytime[i])
                    work2 = append(work2, flux[i])
                    naxis2 += 1

# comment keyword in output file

    if status == 0:
        status = kepkey.history(call, instr[0], outfile, logfile, verbose)

# write output file

    if status == 0:
        instr[1].data = table[:naxis2]
        comment = 'NaN cadences removed from data'
        status = kepkey.new('NANCLEAN', True, comment, instr[1], outfile,
                            logfile, verbose)
        instr.writeto(outfile)

# clean up x-axis unit

    if status == 0:
        barytime0 = float(int(tstart / 100) * 100.0)
        barytime = work1 - barytime0
        xlab = 'BJD $-$ %d' % barytime0

# clean up y-axis units

    if status == 0:
        try:
            nrm = len(str(int(work2.max()))) - 1
        except:
            nrm = 0
        flux = work2 / 10**nrm
        ylab = '10$^%d$ e$^-$ s$^{-1}$' % nrm

        # data limits

        xmin = barytime.min()
        xmax = barytime.max()
        ymin = flux.min()
        ymax = flux.max()
        xr = xmax - xmin
        yr = ymax - ymin

# plotting arguments

    if status == 0 and plot:
        try:
            params = {
                'backend': 'png',
                'axes.linewidth': 2.5,
                'axes.labelsize': labelsize,
                'axes.font': 'sans-serif',
                'axes.fontweight': 'bold',
                'text.fontsize': 12,
                'legend.fontsize': 12,
                'xtick.labelsize': ticksize,
                'ytick.labelsize': ticksize
            }
            rcParams.update(params)
        except:
            print('ERROR -- KEPCLIP: install latex for scientific plotting')
            status = 1

# clear window, plot box

    if status == 0 and plot:
        pylab.figure(figsize=[xsize, ysize])
        pylab.clf()
        ax = pylab.axes([0.05, 0.1, 0.94, 0.88])

        # force tick labels to be absolute rather than relative

        pylab.gca().xaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(
            pylab.ScalarFormatter(useOffset=False))

        # rotate y labels by 90 deg

        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)

        # plot line data

        ltime = [barytime[0]]
        ldata = [flux[0]]
        for i in range(1, len(flux)):
            if (barytime[i - 1] > barytime[i] - 0.025):
                ltime.append(barytime[i])
                ldata.append(flux[i])
            else:
                ltime = array(ltime, dtype=float64)
                ldata = array(ldata, dtype=float64)
                pylab.plot(ltime,
                           ldata,
                           color=lcolor,
                           linestyle='-',
                           linewidth=lwidth)
                ltime = []
                ldata = []
        ltime = array(ltime, dtype=float64)
        ldata = array(ldata, dtype=float64)
        pylab.plot(ltime, ldata, color=lcolor, linestyle='-', linewidth=lwidth)

        # plot fill data

        barytime = insert(barytime, [0], [barytime[0]])
        barytime = append(barytime, [barytime[-1]])
        flux = insert(flux, [0], [0.0])
        flux = append(flux, [0.0])
        fill(barytime, flux, fc=fcolor, linewidth=0.0, alpha=falpha)
        xlim(xmin - xr * 0.01, xmax + xr * 0.01)
        if ymin - yr * 0.01 <= 0.0:
            ylim(1.0e-10, ymax + yr * 0.01)
        else:
            ylim(ymin - yr * 0.01, ymax + yr * 0.01)
        xlabel(xlab, {'color': 'k'})
        ylabel(ylab, {'color': 'k'})
        grid()

# render plot

    if status == 0 and plot:
        if cmdLine:
            pylab.show()
        else:
            pylab.ion()
            pylab.plot([])
            pylab.ioff()

# close input file

    if status == 0:
        status = kepio.closefits(instr, logfile, verbose)

# end time

    if (status == 0):
        message = 'KEPCLIP completed at'
    else:
        message = '\nKEPCLIP aborted at'
    kepmsg.clock(message, logfile, verbose)
Exemple #22
0
def kepfilter(infile,outfile,datacol,function,cutoff,passband,plot,plotlab,
              clobber,verbose,logfile,status,cmdLine=False): 

## startup parameters

    status = 0
    numpy.seterr(all="ignore") 
    labelsize = 24
    ticksize = 16
    xsize = 16
    ysize = 6
    lcolor = '#0000ff'
    lwidth = 1.0
    fcolor = '#ffff00'
    falpha = 0.2

## log the call 

    hashline = '----------------------------------------------------------------------------'
    kepmsg.log(logfile,hashline,verbose)
    call = 'KEPFILTER -- '
    call += 'infile='+infile+' '
    call += 'outfile='+outfile+' '
    call += 'datacol='+str(datacol)+' '
    call += 'function='+str(function)+' '
    call += 'cutoff='+str(cutoff)+' '
    call += 'passband='+str(passband)+' '
    plotit = 'n'
    if (plot): plotit = 'y'
    call += 'plot='+plotit+ ' '
    call += 'plotlab='+str(plotlab)+' '
    overwrite = 'n'
    if (clobber): overwrite = 'y'
    call += 'clobber='+overwrite+ ' '
    chatter = 'n'
    if (verbose): chatter = 'y'
    call += 'verbose='+chatter+' '
    call += 'logfile='+logfile
    kepmsg.log(logfile,call+'\n',verbose)

## start time

    kepmsg.clock('KEPFILTER started at',logfile,verbose)

## test log file

    logfile = kepmsg.test(logfile)

## clobber output file

    if clobber: status = kepio.clobber(outfile,logfile,verbose)
    if kepio.fileexists(outfile): 
	    message = 'ERROR -- KEPFILTER: ' + outfile + ' exists. Use clobber=yes'
	    status = kepmsg.err(logfile,message,verbose)

## open input file

    if status == 0:
        instr, status = kepio.openfits(infile,'readonly',logfile,verbose)
        tstart, tstop, bjdref, cadence, status = kepio.timekeys(instr,infile,logfile,verbose,status)
    if status == 0:
        try:
            work = instr[0].header['FILEVER']
            cadenom = 1.0
        except:
            cadenom = cadence

## fudge non-compliant FITS keywords with no values

    if status == 0:
        instr = kepkey.emptykeys(instr,file,logfile,verbose)

## read table structure

    if status == 0:
	table, status = kepio.readfitstab(infile,instr[1],logfile,verbose)

# read time and flux columns

    if status == 0:
        barytime, status = kepio.readtimecol(infile,table,logfile,verbose)
        flux, status = kepio.readsapcol(infile,table,logfile,verbose)

# filter input data table

    if status == 0:
        try:
            nanclean = instr[1].header['NANCLEAN']
        except:
            naxis2 = 0
            for i in range(len(table.field(0))):
                if (numpy.isfinite(barytime[i]) and numpy.isfinite(flux[i]) and flux[i] != 0.0):
                    table[naxis2] = table[i]
                    naxis2 += 1
            instr[1].data = table[:naxis2]
            comment = 'NaN cadences removed from data'
            status = kepkey.new('NANCLEAN',True,comment,instr[1],outfile,logfile,verbose)

## read table columns

    if status == 0:
        intime, status = kepio.readtimecol(infile,instr[1].data,logfile,verbose)
    if status == 0:
	indata, status = kepio.readfitscol(infile,instr[1].data,datacol,logfile,verbose)
    if status == 0:
        intime = intime + bjdref
        indata = indata / cadenom

## define data sampling

    if status == 0:
        tr = 1.0 / (cadence / 86400)
        timescale = 1.0 / (cutoff / tr)

## define convolution function

    if status == 0:
        if function == 'boxcar':
            filtfunc = numpy.ones(numpy.ceil(timescale))
        elif function == 'gauss':
            timescale /= 2
            dx = numpy.ceil(timescale * 10 + 1)
            filtfunc = kepfunc.gauss()
            filtfunc = filtfunc([1.0,dx/2-1.0,timescale],linspace(0,dx-1,dx))
        elif function == 'sinc':
            dx = numpy.ceil(timescale * 12 + 1)
            fx = linspace(0,dx-1,dx)
            fx = fx - dx / 2 + 0.5
            fx /= timescale
            filtfunc = numpy.sinc(fx)
        filtfunc /= numpy.sum(filtfunc)

## pad time series at both ends with noise model

    if status == 0:
        ave, sigma  = kepstat.stdev(indata[:len(filtfunc)])
        padded = append(kepstat.randarray(np.ones(len(filtfunc)) * ave,
                                          np.ones(len(filtfunc)) * sigma), indata)
        ave, sigma  = kepstat.stdev(indata[-len(filtfunc):])
        padded = append(padded, kepstat.randarray(np.ones(len(filtfunc)) * ave,
                                                  np.ones(len(filtfunc)) * sigma))

## convolve data

    if status == 0:
        convolved = convolve(padded,filtfunc,'same')

## remove padding from the output array

    if status == 0:
        if function == 'boxcar':
            outdata = convolved[len(filtfunc):-len(filtfunc)]
        else:
            outdata = convolved[len(filtfunc):-len(filtfunc)]
            

## subtract low frequencies

    if status == 0 and passband == 'high':
        outmedian = median(outdata)
        outdata = indata - outdata + outmedian

## comment keyword in output file

    if status == 0:
        status = kepkey.history(call,instr[0],outfile,logfile,verbose)

## clean up x-axis unit

    if status == 0:
	intime0 = float(int(tstart / 100) * 100.0)
        if intime0 < 2.4e6: intime0 += 2.4e6
	ptime = intime - intime0
	xlab = 'BJD $-$ %d' % intime0

## clean up y-axis units

    if status == 0:
        pout = indata * 1.0
        pout2 = outdata * 1.0
	nrm = len(str(int(numpy.nanmax(pout))))-1
	pout = pout / 10**nrm
	pout2 = pout2 / 10**nrm
	ylab = '10$^%d$ %s' % (nrm, plotlab)

## data limits

	xmin = ptime.min()
	xmax = ptime.max()
	ymin = numpy.nanmin(pout)
	ymax = numpy.nanmax(pout)
	xr = xmax - xmin
	yr = ymax - ymin
        ptime = insert(ptime,[0],[ptime[0]]) 
        ptime = append(ptime,[ptime[-1]])
        pout = insert(pout,[0],[0.0]) 
        pout = append(pout,0.0)
        pout2 = insert(pout2,[0],[0.0]) 
        pout2 = append(pout2,0.0)

## plot light curve

    if status == 0 and plot:
        try:
            params = {'backend': 'png',
                      'axes.linewidth': 2.5,
                      'axes.labelsize': labelsize,
                      'axes.font': 'sans-serif',
                      'axes.fontweight' : 'bold',
                      'text.fontsize': 12,
                      'legend.fontsize': 12,
                      'xtick.labelsize': ticksize,
                      'ytick.labelsize': ticksize}
            rcParams.update(params)
        except:
            print('ERROR -- KEPFILTER: install latex for scientific plotting')
            status = 1
    if status == 0 and plot:
        pylab.figure(figsize=[xsize,ysize])
        pylab.clf()

## plot filtered data

        ax = pylab.axes([0.06,0.1,0.93,0.87])
        pylab.gca().xaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        pylab.gca().yaxis.set_major_formatter(pylab.ScalarFormatter(useOffset=False))
        labels = ax.get_yticklabels()
        setp(labels, 'rotation', 90, fontsize=12)
        pylab.plot(ptime,pout,color='#ff9900',linestyle='-',linewidth=lwidth)
        fill(ptime,pout,color=fcolor,linewidth=0.0,alpha=falpha)
        if passband == 'low':
            pylab.plot(ptime[1:-1],pout2[1:-1],color=lcolor,linestyle='-',linewidth=lwidth)
        else:
            pylab.plot(ptime,pout2,color=lcolor,linestyle='-',linewidth=lwidth)
            fill(ptime,pout2,color=lcolor,linewidth=0.0,alpha=falpha)
	xlabel(xlab, {'color' : 'k'})
	ylabel(ylab, {'color' : 'k'})
	xlim(xmin-xr*0.01,xmax+xr*0.01)
        if ymin >= 0.0: 
            ylim(ymin-yr*0.01,ymax+yr*0.01)
        else:
            ylim(1.0e-10,ymax+yr*0.01)
        pylab.grid()
        
# render plot

        if cmdLine: 
            pylab.show()
        else: 
            pylab.ion()
            pylab.plot([])
            pylab.ioff()
	
## write output file

    if status == 0:
        for i in range(len(outdata)):
            instr[1].data.field(datacol)[i] = outdata[i]
        instr.writeto(outfile)
    
## close input file

    if status == 0:
        status = kepio.closefits(instr,logfile,verbose)	    

## end time

    if (status == 0):
	    message = 'KEPFILTER completed at'
    else:
	    message = '\nKEPFILTER aborted at'
    kepmsg.clock(message,logfile,verbose)