Exemple #1
0
def correct_pad(backend, inputs, kernel_size):
    """Returns a tuple for zero-padding for 2D convolution with downsampling.

    # Arguments
        input_size: An integer or tuple/list of 2 integers.
        kernel_size: An integer or tuple/list of 2 integers.

    # Returns
        A tuple.
    """
    img_dim = 2 if backend.image_data_format() == 'channels_first' else 1
    input_size = backend.int_shape(inputs)[img_dim:(img_dim + 2)]

    if isinstance(kernel_size, int):
        kernel_size = (kernel_size, kernel_size)

    if input_size[0] is None:
        adjust = (1, 1)
    else:
        adjust = (1 - input_size[0] % 2, 1 - input_size[1] % 2)

    correct = (kernel_size[0] // 2, kernel_size[1] // 2)

    return ((correct[0] - adjust[0], correct[0]), (correct[1] - adjust[1],
                                                   correct[1]))
def conv_block(x, growth_rate, name):
    """A building block for a dense block.

    # Arguments
        x: input tensor.
        growth_rate: float, growth rate at dense layers.
        name: string, block label.

    # Returns
        Output tensor for the block.
    """
    bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
    x1 = layers.BatchNormalization(axis=bn_axis,
                                   epsilon=1.001e-5,
                                   name=name + '_0_bn')(x)
    x1 = layers.Activation('relu', name=name + '_0_relu')(x1)
    x1 = layers.Conv2D(4 * growth_rate, 1,
                       use_bias=False,
                       name=name + '_1_conv')(x1)
    x1 = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
                                   name=name + '_1_bn')(x1)
    x1 = layers.Activation('relu', name=name + '_1_relu')(x1)
    x1 = layers.Conv2D(growth_rate, 3,
                       padding='same',
                       use_bias=False,
                       name=name + '_2_conv')(x1)
    x = layers.Concatenate(axis=bn_axis, name=name + '_concat')([x, x1])
    return x
Exemple #3
0
def conv_block(input_tensor,
               kernel_size,
               filters,
               stage,
               block,
               strides=(2, 2)):
    """A block that has a conv layer at shortcut.

    # Arguments
        input_tensor: input tensor
        kernel_size: default 3, the kernel size of
            middle conv layer at main path
        filters: list of integers, the filters of 3 conv layer at main path
        stage: integer, current stage label, used for generating layer names
        block: 'a','b'..., current block label, used for generating layer names
        strides: Strides for the first conv layer in the block.

    # Returns
        Output tensor for the block.

    Note that from stage 3,
    the first conv layer at main path is with strides=(2, 2)
    And the shortcut should have strides=(2, 2) as well
    """
    filters1, filters2, filters3 = filters
    if backend.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    x = layers.Conv2D(filters1, (1, 1), strides=strides,
                      kernel_initializer='he_normal',
                      name=conv_name_base + '2a')(input_tensor)
    x = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2a')(x)
    x = layers.Activation('relu')(x)

    x = layers.Conv2D(filters2, kernel_size, padding='same',
                      kernel_initializer='he_normal',
                      name=conv_name_base + '2b')(x)
    x = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2b')(x)
    x = layers.Activation('relu')(x)

    x = layers.Conv2D(filters3, (1, 1),
                      kernel_initializer='he_normal',
                      name=conv_name_base + '2c')(x)
    x = layers.BatchNormalization(axis=bn_axis, name=bn_name_base + '2c')(x)

    shortcut = layers.Conv2D(filters3, (1, 1), strides=strides,
                             kernel_initializer='he_normal',
                             name=conv_name_base + '1')(input_tensor)
    shortcut = layers.BatchNormalization(
        axis=bn_axis, name=bn_name_base + '1')(shortcut)

    x = layers.add([x, shortcut])
    x = layers.Activation('relu')(x)
    return x
Exemple #4
0
def ResNet18(input_shape=None, classes=10, **kwargs):
    # Define the input as a tensor with shape input_shape
    x_input = Input(input_shape)

    if backend.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    #stage 1
    with tf.name_scope('stage1'):
        x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(x_input)
        x = layers.Conv2D(64, (7, 7),
                          strides=(2, 2),
                          padding='valid',
                          kernel_initializer='he_normal',
                          name='conv1')(x)
        x = layers.BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
        x = layers.Activation('relu')(x)
        print("stage1:" + str(x.shape))

    #stage 2
    with tf.name_scope('stage2'):
        x = layers.ZeroPadding2D(padding=(1, 1), name='pool1_pad')(x)
        x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)

        x = identity_block(x, 3, [64, 64], stage=2, block='b')
        x = identity_block(x, 3, [64, 64], stage=2, block='c')
        print("stage2:" + str(x.shape))

    #stage 3
    with tf.name_scope('stage3'):
        x = conv_block(x, 3, [128, 128], stage=3, block='a')
        x = identity_block(x, 3, [128, 128], stage=3, block='d')
        print("stage3:" + str(x.shape))

    #stage 4
    with tf.name_scope('stage4'):
        x = conv_block(x, 3, [256, 256], stage=4, block='a')
        x = identity_block(x, 3, [256, 256], stage=4, block='c')
        print("stage4:" + str(x.shape))

    #stage 5
    with tf.name_scope('stage5'):
        x = conv_block(x, 3, [512, 512], stage=5, block='a')
        x = identity_block(x, 3, [512, 512], stage=5, block='c')
        print("stage5:" + str(x.shape))

    #full-connected layer
    with tf.name_scope('fc'):
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        x = layers.Dense(classes, activation='softmax', name='fc10')(x)

    # Create model.
    model = models.Model(x_input, x, name='resnet18')
    return model
def identity_block(input_tensor, kernel_size, filters, stage, block):
    """The identity block is the block that has no conv layer at shortcut.

    # Arguments
        input_tensor: input tensor
        kernel_size: default 3, the kernel size of
            middle conv layer at main path
        filters: list of integers, the filters of 3 conv layer at main path
        stage: integer, current stage label, used for generating layer names
        block: 'a','b'..., current block label, used for generating layer names

    # Returns
        Output tensor for the block.
    """
    filters1, filters2, filters3 = filters
    if backend.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1
    conv_name_base = 'res' + str(stage) + block + '_branch'
    bn_name_base = 'bn' + str(stage) + block + '_branch'

    x = layers.Conv2D(filters1, (1, 1),
                      kernel_initializer=init,
                      name=conv_name_base + '2a',
                      kernel_regularizer=keras.regularizers.l2(0.01))(
                          input_tensor)  # L2正则化
    x = layers.BatchNormalization(axis=bn_axis,
                                  name=bn_name_base + '2a',
                                  gamma_initializer='zeros')(x)
    x = layers.Activation('relu')(x)

    x = layers.Conv2D(filters2,
                      kernel_size,
                      padding='same',
                      kernel_initializer=init,
                      name=conv_name_base + '2b',
                      kernel_regularizer=keras.regularizers.l2(0.01))(
                          x)  # L2正则化
    x = layers.BatchNormalization(axis=bn_axis,
                                  name=bn_name_base + '2b',
                                  gamma_initializer='zeros')(x)
    x = layers.Activation('relu')(x)

    x = layers.Conv2D(filters3, (1, 1),
                      kernel_initializer=init,
                      name=conv_name_base + '2c',
                      kernel_regularizer=keras.regularizers.l2(0.01))(
                          x)  # L2正则化
    x = layers.BatchNormalization(axis=bn_axis,
                                  name=bn_name_base + '2c',
                                  gamma_initializer='zeros')(x)

    x = layers.add([x, input_tensor])
    x = layers.Activation('relu')(x)
    return x
Exemple #6
0
def resnet_net(img_input, include_top, classes, pooling):
    if backend.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1
    x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(img_input)
    x = layers.Conv2D(64, (7, 7),
                      strides=(2, 2),
                      padding='valid',
                      kernel_initializer='he_normal',
                      name='conv1')(x)
    x = layers.BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = layers.Activation('relu')(x)
    x = layers.ZeroPadding2D(padding=(1, 1), name='pool1_pad')(x)
    x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

    if include_top:
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        x = layers.Dense(classes, activation='softmax', name='fc1000')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)
        else:
            warnings.warn('The output shape of `ResNet50(include_top=False)` '
                          'has been changed since Keras 2.2.0.')
    return x
Exemple #7
0
def preprocess_input(x, data_format=None, mode='caffe', **kwargs):
    """Preprocesses a tensor or Numpy array encoding a batch of images.

    # Arguments
        x: Input Numpy or symbolic tensor, 3D or 4D.
            The preprocessed data is written over the input data
            if the data types are compatible. To avoid this
            behaviour, `numpy.copy(x)` can be used.
        data_format: Data format of the image tensor/array.
        mode: One of "caffe", "tf" or "torch".
            - caffe: will convert the images from RGB to BGR,
                then will zero-center each color channel with
                respect to the ImageNet dataset,
                without scaling.
            - tf: will scale pixels between -1 and 1,
                sample-wise.
            - torch: will scale pixels between 0 and 1 and then
                will normalize each channel with respect to the
                ImageNet dataset.

    # Returns
        Preprocessed tensor or Numpy array.

    # Raises
        ValueError: In case of unknown `data_format` argument.
    """
    backend, _, _, _ = get_submodules_from_kwargs(kwargs)

    if data_format is None:
        data_format = backend.image_data_format()
    if data_format not in {'channels_first', 'channels_last'}:
        raise ValueError('Unknown data_format ' + str(data_format))

    if isinstance(x, np.ndarray):
        return _preprocess_numpy_input(x,
                                       data_format=data_format,
                                       mode=mode,
                                       **kwargs)
    else:
        return _preprocess_symbolic_input(x,
                                          data_format=data_format,
                                          mode=mode,
                                          **kwargs)
def transition_block(x, reduction, name):
    """A transition block.

    # Arguments
        x: input tensor.
        reduction: float, compression rate at transition layers.
        name: string, block label.

    # Returns
        output tensor for the block.
    """
    bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1
    x = layers.BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
                                  name=name + '_bn')(x)
    x = layers.Activation('relu', name=name + '_relu')(x)
    x = layers.Conv2D(int(backend.int_shape(x)[bn_axis] * reduction), 1,
                      use_bias=False,
                      name=name + '_conv')(x)
    x = layers.AveragePooling2D(2, strides=2, name=name + '_pool')(x)
    return x
Exemple #9
0
def conv2d_bn(x,
              filters,
              num_row,
              num_col,
              padding='same',
              strides=(1, 1),
              name=None):
    """Utility function to apply conv + BN.

    # Arguments
        x: input tensor.
        filters: filters in `Conv2D`.
        num_row: height of the convolution kernel.
        num_col: width of the convolution kernel.
        padding: padding mode in `Conv2D`.
        strides: strides in `Conv2D`.
        name: name of the ops; will become `name + '_conv'`
            for the convolution and `name + '_bn'` for the
            batch norm layer.

    # Returns
        Output tensor after applying `Conv2D` and `BatchNormalization`.
    """
    if name is not None:
        bn_name = name + '_bn'
        conv_name = name + '_conv'
    else:
        bn_name = None
        conv_name = None
    if backend.image_data_format() == 'channels_first':
        bn_axis = 1
    else:
        bn_axis = 3
    x = layers.Conv2D(filters, (num_row, num_col),
                      strides=strides,
                      padding=padding,
                      use_bias=False,
                      name=conv_name)(x)
    x = layers.BatchNormalization(axis=bn_axis, scale=False, name=bn_name)(x)
    x = layers.Activation('relu', name=name)(x)
    return x
Exemple #10
0
def ResNet50(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000,
             **kwargs):
    """Instantiates the ResNet50 architecture.

    Optionally loads weights pre-trained on ImageNet.
    Note that the data format convention used by the model is
    the one specified in your Keras config at `~/.keras/keras.json`.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 224)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 32.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional block.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional block, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    global backend, layers, models, keras_utils
    backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)

    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=32,
                                      data_format=backend.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    if backend.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1

    x = layers.ZeroPadding2D(padding=(3, 3), name='conv1_pad')(img_input)
    x = layers.Conv2D(64, (7, 7),
                      strides=(2, 2),
                      padding='valid',
                      kernel_initializer='he_normal',
                      name='conv1')(x)
    x = layers.BatchNormalization(axis=bn_axis, name='bn_conv1')(x)
    x = layers.Activation('relu')(x)
    x = layers.ZeroPadding2D(padding=(1, 1), name='pool1_pad')(x)
    x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv_block(x, 3, [64, 64, 256], stage=2, block='a', strides=(1, 1))
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='b')
    x = identity_block(x, 3, [64, 64, 256], stage=2, block='c')

    x = conv_block(x, 3, [128, 128, 512], stage=3, block='a')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='b')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='c')
    x = identity_block(x, 3, [128, 128, 512], stage=3, block='d')

    x = conv_block(x, 3, [256, 256, 1024], stage=4, block='a')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='b')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='c')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='d')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='e')
    x = identity_block(x, 3, [256, 256, 1024], stage=4, block='f')

    x = conv_block(x, 3, [512, 512, 2048], stage=5, block='a')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='b')
    x = identity_block(x, 3, [512, 512, 2048], stage=5, block='c')

    if include_top:
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        x = layers.Dense(classes, activation='softmax', name='fc1000')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)
        else:
            warnings.warn('The output shape of `ResNet50(include_top=False)` '
                          'has been changed since Keras 2.2.0.')

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = keras_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = models.Model(inputs, x, name='resnet50')

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            weights_path = keras_utils.get_file(
                'resnet50_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models',
                md5_hash='a7b3fe01876f51b976af0dea6bc144eb',
                cache_dir=os.path.join(os.path.dirname(__file__), '..'))
        else:
            weights_path = keras_utils.get_file(
                'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models',
                md5_hash='a268eb855778b3df3c7506639542a6af',
                cache_dir=os.path.join(os.path.dirname(__file__), '..'))
        model.load_weights(weights_path)
        if backend.backend() == 'theano':
            keras_utils.convert_all_kernels_in_model(model)
    elif weights is not None:
        model.load_weights(weights)

    return model
def ResNext50(include_top=True,
             weights=None,
            depth=[3, 4, 6, 3],
            cardinality=32,
            width=4,
            weight_decay=5e-4,
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000,
             **kwargs):
    """Instantiates the ResNet50 architecture.

    Optionally loads weights pre-trained on ImageNet.
    Note that the data format convention used by the model is
    the one specified in your Keras config at `~/.keras/keras.json`.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 224)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 32.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional block.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional block, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    global backend, layers, models, keras_utils
    backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)

    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
                         ' as true, `classes` should be 1000')
    if type(depth) == int and (depth - 2) % 9 != 0:
        raise ValueError('Depth of the network must be such that (depth - 2)'
                         'should be divisible by 9.')
    # Determine proper input shape

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=32,
                                      data_format=backend.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor
    if backend.image_data_format() == 'channels_last':
        bn_axis = 3
    else:
        bn_axis = 1
    x = __create_res_next_imagenet(classes, img_input, include_top, depth, cardinality, width,
                                   weight_decay, pooling)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    if input_tensor is not None:
        inputs = keras_utils.get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = models.Model(inputs, x, name='resnext50')

    # Load weights.
    if weights == 'imagenet':
        if (depth == [3, 4, 6, 3]) and (cardinality == 32) and (width == 4):
            # Default parameters match. Weights for this model exist:

            if K.image_data_format() == 'channels_first':
                if include_top:
                    weights_path = get_file('resnext_imagenet_32_4_th_dim_ordering_th_kernels.h5',
                                            IMAGENET_TH_WEIGHTS_PATH,
                                            cache_subdir='models')
                else:
                    weights_path = get_file('resnext_imagenet_32_4_th_dim_ordering_th_kernels_no_top.h5',
                                            IMAGENET_TH_WEIGHTS_PATH_NO_TOP,
                                            cache_subdir='models')

                model.load_weights(weights_path)

                if K.backend() == 'tensorflow':
                    warnings.warn('You are using the TensorFlow backend, yet you '
                                  'are using the Theano '
                                  'image dimension ordering convention '
                                  '(`image_dim_ordering="th"`). '
                                  'For best performance, set '
                                  '`image_dim_ordering="tf"` in '
                                  'your Keras config '
                                  'at ~/.keras/keras.json.')
                    convert_all_kernels_in_model(model)
            else:
                if include_top:
                    weights_path = get_file('resnext_imagenet_32_4_tf_dim_ordering_tf_kernels.h5',
                                            IMAGENET_TF_WEIGHTS_PATH,
                                            cache_subdir='models')
                else:
                    weights_path = get_file('resnext_imagenet_32_4_tf_dim_ordering_tf_kernels_no_top.h5',
                                            IMAGENET_TF_WEIGHTS_PATH_NO_TOP,
                                            cache_subdir='models')

                model.load_weights(weights_path)

                if K.backend() == 'theano':
                    convert_all_kernels_in_model(model)
    #     if include_top:
    #         weights_path = keras_utils.get_file(
    #             'resnet50_weights_tf_dim_ordering_tf_kernels.h5',
    #             WEIGHTS_PATH,
    #             cache_subdir='models',
    #             md5_hash='a7b3fe01876f51b976af0dea6bc144eb',
    #             cache_dir=os.path.join(os.path.dirname(__file__), '..'))
    #     else:
    #         weights_path = keras_utils.get_file(
    #             'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
    #             WEIGHTS_PATH_NO_TOP,
    #             cache_subdir='models',
    #             md5_hash='a268eb855778b3df3c7506639542a6af',
    #             cache_dir=os.path.join(os.path.dirname(__file__), '..'))
    #     model.load_weights(weights_path)
    #     if backend.backend() == 'theano':
    #         keras_utils.convert_all_kernels_in_model(model)
    # elif weights is not None:
    #     model.load_weights(weights)

    return model
def DenseNet(blocks,
             include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000,
             **kwargs):
    """Instantiates the DenseNet architecture.

    Optionally loads weights pre-trained on ImageNet.
    Note that the data format convention used by the model is
    the one specified in your Keras config at `~/.keras/keras.json`.

    # Arguments
        blocks: numbers of building blocks for the four dense layers.
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor
            (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `'channels_last'` data format)
            or `(3, 224, 224)` (with `'channels_first'` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 32.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional block.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional block, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    global backend, layers, models, keras_utils
    backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)

    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError('If using `weights` as `"imagenet"` with `include_top`'
                         ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=32,
                                      data_format=backend.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    bn_axis = 3 if backend.image_data_format() == 'channels_last' else 1

    x = layers.ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input)
    x = layers.Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x)
    x = layers.BatchNormalization(
        axis=bn_axis, epsilon=1.001e-5, name='conv1/bn')(x)
    x = layers.Activation('relu', name='conv1/relu')(x)
    x = layers.ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
    x = layers.MaxPooling2D(3, strides=2, name='pool1')(x)

    x = dense_block(x, blocks[0], name='conv2')
    x = transition_block(x, 0.5, name='pool2')
    x = dense_block(x, blocks[1], name='conv3')
    x = transition_block(x, 0.5, name='pool3')
    x = dense_block(x, blocks[2], name='conv4')
    x = transition_block(x, 0.5, name='pool4')
    x = dense_block(x, blocks[3], name='conv5')

    x = layers.BatchNormalization(
        axis=bn_axis, epsilon=1.001e-5, name='bn')(x)
    x = layers.Activation('relu', name='relu')(x)

    if include_top:
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        x = layers.Dense(classes, activation='softmax', name='fc1000')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D(name='max_pool')(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    from keras.engine.topology import get_source_inputs
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input

    # Create model.
    if blocks == [6, 12, 24, 16]:
        model = models.Model(inputs, x, name='densenet121')
    elif blocks == [6, 12, 32, 32]:
        model = models.Model(inputs, x, name='densenet169')
    elif blocks == [6, 12, 48, 32]:
        model = models.Model(inputs, x, name='densenet201')
    else:
        model = models.Model(inputs, x, name='densenet')
    weights_path=[]
    # Load weights.
    if weights == 'imagenet':
        if include_top:
            if blocks == [6, 12, 24, 16]:
                weights_path = keras_utils.get_file(
                    'densenet121_weights_tf_dim_ordering_tf_kernels.h5',
                    DENSENET121_WEIGHT_PATH,
                    cache_subdir='models',
                    file_hash='9d60b8095a5708f2dcce2bca79d332c7')
            elif blocks == [6, 12, 32, 32]:
                weights_path = keras_utils.get_file(
                    'densenet169_weights_tf_dim_ordering_tf_kernels.h5',
                    DENSENET169_WEIGHT_PATH,
                    cache_subdir='models',
                    file_hash='d699b8f76981ab1b30698df4c175e90b')
            elif blocks == [6, 12, 48, 32]:
                weights_path = keras_utils.get_file(
                    'densenet201_weights_tf_dim_ordering_tf_kernels.h5',
                    DENSENET201_WEIGHT_PATH,
                    cache_subdir='models',
                    file_hash='1ceb130c1ea1b78c3bf6114dbdfd8807')
        else:
            if blocks == [6, 12, 24, 16]:
                weights_path = keras_utils.get_file(
                    'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5',
                    DENSENET121_WEIGHT_PATH_NO_TOP,
                    cache_subdir='models',
                    file_hash='30ee3e1110167f948a6b9946edeeb738')
            elif blocks == [6, 12, 32, 32]:
                weights_path = keras_utils.get_file(
                    'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5',
                    DENSENET169_WEIGHT_PATH_NO_TOP,
                    cache_subdir='models',
                    file_hash='b8c4d4c20dd625c148057b9ff1c1176b')
            elif blocks == [6, 12, 48, 32]:
                weights_path = DENSENET201_WEIGHT_PATH_NO_TOP
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model
Exemple #13
0
def ResNet50(include_top=True,
             weights=None,
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000,
             **kwargs):
    """Instantiates the ResNet50 architecture.

    Optionally loads weights pre-trained on ImageNet.
    Note that the data format convention used by the model is
    the one specified in your Keras config at `~/.keras/keras.json`.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(224, 224, 3)` (with `channels_last` data format)
            or `(3, 224, 224)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 32.
            E.g. `(200, 200, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional block.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional block, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    global backend, layers, models, keras_utils
    backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)

    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=32,
                                      data_format=backend.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    x = resnet_net(img_input, include_top, classes, pooling)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    from keras.engine.topology import get_source_inputs
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = models.Model(inputs, x, name='resnet50')

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            weights_path = keras_utils.get_file(
                'resnet50_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models',
                md5_hash='a7b3fe01876f51b976af0dea6bc144eb',
                cache_dir=os.path.join(os.path.dirname(__file__), '..'))
        else:
            weights_path = keras_utils.get_file(
                'resnet50_weights_tf_dim_ordering_tf_kernels_notop.h5',
                WEIGHTS_PATH_NO_TOP,
                cache_subdir='models',
                md5_hash='a268eb855778b3df3c7506639542a6af',
                cache_dir=os.path.join(os.path.dirname(__file__), '..'))
        model.load_weights(weights_path)
        if backend.backend() == 'theano':
            keras_utils.convert_all_kernels_in_model(model)
    elif weights is not None:
        model.load_weights(weights)

    return model
def Xception(include_top=True,
             weights='imagenet',
             input_tensor=None,
             input_shape=None,
             pooling=None,
             classes=1000,
             **kwargs):
    """Instantiates the Xception architecture.

    Optionally loads weights pre-trained on ImageNet.
    Note that the data format convention used by the model is
    the one specified in your Keras config at `~/.keras/keras.json`.

    Note that the default input image size for this model is 299x299.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor
            (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(299, 299, 3)`.
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 71.
            E.g. `(150, 150, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional block.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional block, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True,
            and if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
        RuntimeError: If attempting to run this model with a
            backend that does not support separable convolutions.
    """
    backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)

    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=299,
                                      min_size=71,
                                      data_format=backend.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    channel_axis = 1 if backend.image_data_format() == 'channels_first' else -1

    x = layers.Conv2D(32, (3, 3),
                      strides=(2, 2),
                      use_bias=False,
                      name='block1_conv1')(img_input)
    x = layers.BatchNormalization(axis=channel_axis, name='block1_conv1_bn')(x)
    x = layers.Activation('relu', name='block1_conv1_act')(x)
    x = layers.Conv2D(64, (3, 3), use_bias=False, name='block1_conv2')(x)
    x = layers.BatchNormalization(axis=channel_axis, name='block1_conv2_bn')(x)
    x = layers.Activation('relu', name='block1_conv2_act')(x)

    residual = layers.Conv2D(128, (1, 1),
                             strides=(2, 2),
                             padding='same',
                             use_bias=False)(x)
    residual = layers.BatchNormalization(axis=channel_axis)(residual)

    x = layers.SeparableConv2D(128, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block2_sepconv1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block2_sepconv1_bn')(x)
    x = layers.Activation('relu', name='block2_sepconv2_act')(x)
    x = layers.SeparableConv2D(128, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block2_sepconv2')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block2_sepconv2_bn')(x)

    x = layers.MaxPooling2D((3, 3),
                            strides=(2, 2),
                            padding='same',
                            name='block2_pool')(x)
    x = layers.add([x, residual])

    residual = layers.Conv2D(256, (1, 1),
                             strides=(2, 2),
                             padding='same',
                             use_bias=False)(x)
    residual = layers.BatchNormalization(axis=channel_axis)(residual)

    x = layers.Activation('relu', name='block3_sepconv1_act')(x)
    x = layers.SeparableConv2D(256, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block3_sepconv1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block3_sepconv1_bn')(x)
    x = layers.Activation('relu', name='block3_sepconv2_act')(x)
    x = layers.SeparableConv2D(256, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block3_sepconv2')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block3_sepconv2_bn')(x)

    x = layers.MaxPooling2D((3, 3),
                            strides=(2, 2),
                            padding='same',
                            name='block3_pool')(x)
    x = layers.add([x, residual])

    residual = layers.Conv2D(728, (1, 1),
                             strides=(2, 2),
                             padding='same',
                             use_bias=False)(x)
    residual = layers.BatchNormalization(axis=channel_axis)(residual)

    x = layers.Activation('relu', name='block4_sepconv1_act')(x)
    x = layers.SeparableConv2D(728, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block4_sepconv1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block4_sepconv1_bn')(x)
    x = layers.Activation('relu', name='block4_sepconv2_act')(x)
    x = layers.SeparableConv2D(728, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block4_sepconv2')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block4_sepconv2_bn')(x)

    x = layers.MaxPooling2D((3, 3),
                            strides=(2, 2),
                            padding='same',
                            name='block4_pool')(x)
    x = layers.add([x, residual])

    for i in range(8):
        residual = x
        prefix = 'block' + str(i + 5)

        x = layers.Activation('relu', name=prefix + '_sepconv1_act')(x)
        x = layers.SeparableConv2D(728, (3, 3),
                                   padding='same',
                                   use_bias=False,
                                   name=prefix + '_sepconv1')(x)
        x = layers.BatchNormalization(axis=channel_axis,
                                      name=prefix + '_sepconv1_bn')(x)
        x = layers.Activation('relu', name=prefix + '_sepconv2_act')(x)
        x = layers.SeparableConv2D(728, (3, 3),
                                   padding='same',
                                   use_bias=False,
                                   name=prefix + '_sepconv2')(x)
        x = layers.BatchNormalization(axis=channel_axis,
                                      name=prefix + '_sepconv2_bn')(x)
        x = layers.Activation('relu', name=prefix + '_sepconv3_act')(x)
        x = layers.SeparableConv2D(728, (3, 3),
                                   padding='same',
                                   use_bias=False,
                                   name=prefix + '_sepconv3')(x)
        x = layers.BatchNormalization(axis=channel_axis,
                                      name=prefix + '_sepconv3_bn')(x)

        x = layers.add([x, residual])

    residual = layers.Conv2D(1024, (1, 1),
                             strides=(2, 2),
                             padding='same',
                             use_bias=False)(x)
    residual = layers.BatchNormalization(axis=channel_axis)(residual)

    x = layers.Activation('relu', name='block13_sepconv1_act')(x)
    x = layers.SeparableConv2D(728, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block13_sepconv1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block13_sepconv1_bn')(x)
    x = layers.Activation('relu', name='block13_sepconv2_act')(x)
    x = layers.SeparableConv2D(1024, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block13_sepconv2')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block13_sepconv2_bn')(x)

    x = layers.MaxPooling2D((3, 3),
                            strides=(2, 2),
                            padding='same',
                            name='block13_pool')(x)
    x = layers.add([x, residual])

    x = layers.SeparableConv2D(1536, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block14_sepconv1')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block14_sepconv1_bn')(x)
    x = layers.Activation('relu', name='block14_sepconv1_act')(x)

    x = layers.SeparableConv2D(2048, (3, 3),
                               padding='same',
                               use_bias=False,
                               name='block14_sepconv2')(x)
    x = layers.BatchNormalization(axis=channel_axis,
                                  name='block14_sepconv2_bn')(x)
    x = layers.Activation('relu', name='block14_sepconv2_act')(x)

    if include_top:
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        x = layers.Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    from keras.engine.topology import get_source_inputs
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = models.Model(inputs, x, name='xception')

    # Load weights.
    if weights == 'imagenet':
        # if include_top:
        #     weights_path = keras_utils.get_file(
        #         'xception_weights_tf_dim_ordering_tf_kernels.h5',
        #         TF_WEIGHTS_PATH,
        #         cache_subdir='models',
        #         file_hash='0a58e3b7378bc2990ea3b43d5981f1f6')

        weights_path = WEIGHTS_PATH_NO_TOP
        model.load_weights(weights_path)
        if backend.backend() == 'theano':
            keras_utils.convert_all_kernels_in_model(model)
    elif weights is not None:
        model.load_weights(weights)

    return model
Exemple #15
0
def InceptionV3(include_top=True,
                weights='imagenet',
                input_tensor=None,
                input_shape=None,
                pooling=None,
                classes=1000,
                **kwargs):
    """Instantiates the Inception v3 architecture.

    Optionally loads weights pre-trained on ImageNet.
    Note that the data format convention used by the model is
    the one specified in your Keras config at `~/.keras/keras.json`.

    # Arguments
        include_top: whether to include the fully-connected
            layer at the top of the network.
        weights: one of `None` (random initialization),
              'imagenet' (pre-training on ImageNet),
              or the path to the weights file to be loaded.
        input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
            to use as image input for the model.
        input_shape: optional shape tuple, only to be specified
            if `include_top` is False (otherwise the input shape
            has to be `(299, 299, 3)` (with `channels_last` data format)
            or `(3, 299, 299)` (with `channels_first` data format).
            It should have exactly 3 inputs channels,
            and width and height should be no smaller than 75.
            E.g. `(150, 150, 3)` would be one valid value.
        pooling: Optional pooling mode for feature extraction
            when `include_top` is `False`.
            - `None` means that the output of the model will be
                the 4D tensor output of the
                last convolutional block.
            - `avg` means that global average pooling
                will be applied to the output of the
                last convolutional block, and thus
                the output of the model will be a 2D tensor.
            - `max` means that global max pooling will
                be applied.
        classes: optional number of classes to classify images
            into, only to be specified if `include_top` is True, and
            if no `weights` argument is specified.

    # Returns
        A Keras model instance.

    # Raises
        ValueError: in case of invalid argument for `weights`,
            or invalid input shape.
    """
    global backend, layers, models, keras_utils
    backend, layers, models, keras_utils = get_submodules_from_kwargs(kwargs)

    if not (weights in {'imagenet', None} or os.path.exists(weights)):
        raise ValueError('The `weights` argument should be either '
                         '`None` (random initialization), `imagenet` '
                         '(pre-training on ImageNet), '
                         'or the path to the weights file to be loaded.')

    if weights == 'imagenet' and include_top and classes != 1000:
        raise ValueError(
            'If using `weights` as `"imagenet"` with `include_top`'
            ' as true, `classes` should be 1000')

    # Determine proper input shape
    input_shape = _obtain_input_shape(input_shape,
                                      default_size=224,
                                      min_size=32,
                                      data_format=backend.image_data_format(),
                                      require_flatten=include_top,
                                      weights=weights)

    if input_tensor is None:
        img_input = layers.Input(shape=input_shape)
    else:
        if not backend.is_keras_tensor(input_tensor):
            img_input = layers.Input(tensor=input_tensor, shape=input_shape)
        else:
            img_input = input_tensor

    if backend.image_data_format() == 'channels_first':
        channel_axis = 1
    else:
        channel_axis = 3

    x = conv2d_bn(img_input, 32, 3, 3, strides=(2, 2), padding='valid')
    x = conv2d_bn(x, 32, 3, 3, padding='valid')
    x = conv2d_bn(x, 64, 3, 3)
    x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)

    x = conv2d_bn(x, 80, 1, 1, padding='valid')
    x = conv2d_bn(x, 192, 3, 3, padding='valid')
    x = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)

    # mixed 0: 35 x 35 x 256
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = layers.AveragePooling2D((3, 3),
                                          strides=(1, 1),
                                          padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 32, 1, 1)
    x = layers.concatenate([branch1x1, branch5x5, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed0')

    # mixed 1: 35 x 35 x 288
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = layers.AveragePooling2D((3, 3),
                                          strides=(1, 1),
                                          padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate([branch1x1, branch5x5, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed1')

    # mixed 2: 35 x 35 x 288
    branch1x1 = conv2d_bn(x, 64, 1, 1)

    branch5x5 = conv2d_bn(x, 48, 1, 1)
    branch5x5 = conv2d_bn(branch5x5, 64, 5, 5)

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)

    branch_pool = layers.AveragePooling2D((3, 3),
                                          strides=(1, 1),
                                          padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 64, 1, 1)
    x = layers.concatenate([branch1x1, branch5x5, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed2')

    # mixed 3: 17 x 17 x 768
    branch3x3 = conv2d_bn(x, 384, 3, 3, strides=(2, 2), padding='valid')

    branch3x3dbl = conv2d_bn(x, 64, 1, 1)
    branch3x3dbl = conv2d_bn(branch3x3dbl, 96, 3, 3)
    branch3x3dbl = conv2d_bn(branch3x3dbl,
                             96,
                             3,
                             3,
                             strides=(2, 2),
                             padding='valid')

    branch_pool = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate([branch3x3, branch3x3dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed3')

    # mixed 4: 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 128, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 128, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 128, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 128, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = layers.AveragePooling2D((3, 3),
                                          strides=(1, 1),
                                          padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate([branch1x1, branch7x7, branch7x7dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed4')

    # mixed 5, 6: 17 x 17 x 768
    for i in range(2):
        branch1x1 = conv2d_bn(x, 192, 1, 1)

        branch7x7 = conv2d_bn(x, 160, 1, 1)
        branch7x7 = conv2d_bn(branch7x7, 160, 1, 7)
        branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

        branch7x7dbl = conv2d_bn(x, 160, 1, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 1, 7)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 160, 7, 1)
        branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

        branch_pool = layers.AveragePooling2D((3, 3),
                                              strides=(1, 1),
                                              padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch7x7, branch7x7dbl, branch_pool],
            axis=channel_axis,
            name='mixed' + str(5 + i))

    # mixed 7: 17 x 17 x 768
    branch1x1 = conv2d_bn(x, 192, 1, 1)

    branch7x7 = conv2d_bn(x, 192, 1, 1)
    branch7x7 = conv2d_bn(branch7x7, 192, 1, 7)
    branch7x7 = conv2d_bn(branch7x7, 192, 7, 1)

    branch7x7dbl = conv2d_bn(x, 192, 1, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 7, 1)
    branch7x7dbl = conv2d_bn(branch7x7dbl, 192, 1, 7)

    branch_pool = layers.AveragePooling2D((3, 3),
                                          strides=(1, 1),
                                          padding='same')(x)
    branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
    x = layers.concatenate([branch1x1, branch7x7, branch7x7dbl, branch_pool],
                           axis=channel_axis,
                           name='mixed7')

    # mixed 8: 8 x 8 x 1280
    branch3x3 = conv2d_bn(x, 192, 1, 1)
    branch3x3 = conv2d_bn(branch3x3,
                          320,
                          3,
                          3,
                          strides=(2, 2),
                          padding='valid')

    branch7x7x3 = conv2d_bn(x, 192, 1, 1)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 1, 7)
    branch7x7x3 = conv2d_bn(branch7x7x3, 192, 7, 1)
    branch7x7x3 = conv2d_bn(branch7x7x3,
                            192,
                            3,
                            3,
                            strides=(2, 2),
                            padding='valid')

    branch_pool = layers.MaxPooling2D((3, 3), strides=(2, 2))(x)
    x = layers.concatenate([branch3x3, branch7x7x3, branch_pool],
                           axis=channel_axis,
                           name='mixed8')

    # mixed 9: 8 x 8 x 2048
    for i in range(2):
        branch1x1 = conv2d_bn(x, 320, 1, 1)

        branch3x3 = conv2d_bn(x, 384, 1, 1)
        branch3x3_1 = conv2d_bn(branch3x3, 384, 1, 3)
        branch3x3_2 = conv2d_bn(branch3x3, 384, 3, 1)
        branch3x3 = layers.concatenate([branch3x3_1, branch3x3_2],
                                       axis=channel_axis,
                                       name='mixed9_' + str(i))

        branch3x3dbl = conv2d_bn(x, 448, 1, 1)
        branch3x3dbl = conv2d_bn(branch3x3dbl, 384, 3, 3)
        branch3x3dbl_1 = conv2d_bn(branch3x3dbl, 384, 1, 3)
        branch3x3dbl_2 = conv2d_bn(branch3x3dbl, 384, 3, 1)
        branch3x3dbl = layers.concatenate([branch3x3dbl_1, branch3x3dbl_2],
                                          axis=channel_axis)

        branch_pool = layers.AveragePooling2D((3, 3),
                                              strides=(1, 1),
                                              padding='same')(x)
        branch_pool = conv2d_bn(branch_pool, 192, 1, 1)
        x = layers.concatenate(
            [branch1x1, branch3x3, branch3x3dbl, branch_pool],
            axis=channel_axis,
            name='mixed' + str(9 + i))
    if include_top:
        # Classification block
        x = layers.GlobalAveragePooling2D(name='avg_pool')(x)
        x = layers.Dense(classes, activation='softmax', name='predictions')(x)
    else:
        if pooling == 'avg':
            x = layers.GlobalAveragePooling2D()(x)
        elif pooling == 'max':
            x = layers.GlobalMaxPooling2D()(x)

    # Ensure that the model takes into account
    # any potential predecessors of `input_tensor`.
    from keras.engine.topology import get_source_inputs
    if input_tensor is not None:
        inputs = get_source_inputs(input_tensor)
    else:
        inputs = img_input
    # Create model.
    model = models.Model(inputs, x, name='inception_v3')

    # Load weights.
    if weights == 'imagenet':
        if include_top:
            weights_path = keras_utils.get_file(
                'inception_v3_weights_tf_dim_ordering_tf_kernels.h5',
                WEIGHTS_PATH,
                cache_subdir='models',
                file_hash='9a0d58056eeedaa3f26cb7ebd46da564')
        else:
            weights_path = WEIGHTS_PATH_NO_TOP
            # keras_utils.get_file(
            # 'inception_v3_weights_tf_dim_ordering_tf_kernels_notop.h5',
            # WEIGHTS_PATH_NO_TOP,
            # )
        model.load_weights(weights_path)
    elif weights is not None:
        model.load_weights(weights)

    return model