Exemple #1
0
    def __init__(self, filters, kernel_size,
                 kernel_initializer='glorot_uniform', activation=None, weights=None,
                 padding='valid', strides=(1, 1), data_format=None,
                 kernel_regularizer=None, bias_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None, bias_constraint=None,
                 use_bias=True, **kwargs):
        if data_format is None:
            data_format = K.image_data_format()
        if padding not in {'valid', 'same', 'full'}:
            raise ValueError('Invalid border mode for CosineConvolution2D:', padding)
        self.filters = filters
        self.kernel_size = kernel_size
        self.nb_row, self.nb_col = self.kernel_size
        self.kernel_initializer = initializers.get(kernel_initializer)
        self.activation = activations.get(activation)
        self.padding = padding
        self.strides = tuple(strides)
        self.data_format = normalize_data_format(data_format)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)

        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)

        self.use_bias = use_bias
        self.input_spec = [InputSpec(ndim=4)]
        self.initial_weights = weights
        super(CosineConvolution2D, self).__init__(**kwargs)
 def __init__(self, rank,
              filters,
              kernel_size,
              strides=1,
              padding='valid',
              data_format='channels_first',
              dilation_rate=1,
              activation=None,
              use_bias=True,
              normalize_weight=False,
              kernel_initializer='quaternion',
              bias_initializer='zeros',
              gamma_diag_initializer=sqrt_init,
              gamma_off_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              gamma_diag_regularizer=None,
              gamma_off_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              gamma_diag_constraint=None,
              gamma_off_constraint=None,
              init_criterion='he',
              seed=None,
              spectral_parametrization=False,
              epsilon=1e-7,
              **kwargs):
     super(QuaternionConv, self).__init__(**kwargs)
     self.rank = rank
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank, 'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = common.normalize_data_format(data_format)
     self.dilation_rate = conv_utils.normalize_tuple(dilation_rate, rank, 'dilation_rate')
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.normalize_weight = normalize_weight
     self.init_criterion = init_criterion
     self.spectral_parametrization = spectral_parametrization
     self.epsilon = epsilon
     self.kernel_initializer = sanitizedInitGet(kernel_initializer)
     self.bias_initializer = sanitizedInitGet(bias_initializer)
     self.gamma_diag_initializer = sanitizedInitGet(gamma_diag_initializer)
     self.gamma_off_initializer = sanitizedInitGet(gamma_off_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.gamma_diag_regularizer = regularizers.get(gamma_diag_regularizer)
     self.gamma_off_regularizer = regularizers.get(gamma_off_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.gamma_diag_constraint = constraints.get(gamma_diag_constraint)
     self.gamma_off_constraint = constraints.get(gamma_off_constraint)
     if seed is None:
         self.seed = np.random.randint(1, 10e6)
     else:
         self.seed = seed
     self.input_spec = InputSpec(ndim=self.rank + 2)
 def __init__(self,
              filters,
              kernel_size,
              strides=1,
              rank=2,
              padding='valid',
              data_format=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              **kwargs):
     super(Conv2D121, self).__init__(**kwargs)
     self.rank = rank
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank,
                                                   'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
     # normalize_padding: 检查padding的值,只有['valid', 'same', 'causal']三个值合法
     self.padding = conv_utils.normalize_padding(padding)
     # data_format: 检查
     self.data_format = normalize_data_format(data_format)
     self.use_bias = use_bias,
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.input_spec = InputSpec(ndim=self.rank + 2)
Exemple #4
0
 def __init__(self,
              padding=(1, 1),
              data_format=None,
              **kwargs):
     super(ReflectionPadding2D, self).__init__(**kwargs)
     self.data_format = K.normalize_data_format(data_format)
     if isinstance(padding, int):
         self.padding = ((padding, padding), (padding, padding))
     elif hasattr(padding, '__len__'):
         if len(padding) != 2:
             raise ValueError('`padding` should have two elements. '
                              'Found: ' + str(padding))
         height_padding = conv_utils.normalize_tuple(padding[0], 2,
                                                     '1st entry of padding')
         width_padding = conv_utils.normalize_tuple(padding[1], 2,
                                                    '2nd entry of padding')
         self.padding = (height_padding, width_padding)
     else:
         raise ValueError('`padding` should be either an int, '
                          'a tuple of 2 ints '
                          '(symmetric_height_pad, symmetric_width_pad), '
                          'or a tuple of 2 tuples of 2 ints '
                          '((top_pad, bottom_pad), (left_pad, right_pad)). '
                          'Found: ' + str(padding))
     self.input_spec = InputSpec(ndim=4)
Exemple #5
0
def get_2data(data_name,
              resize=True,
              data_format=None):  #当train和test数据被分为两个部分时使用
    file_name = os.path.join(
        pic_dir_out, data_name + str(Width) + "X" + str(Height) + ".pkl")
    if os.path.exists(file_name):  #判断之前是否有存到文件中
        (X_train, y_train), (X_test,
                             y_test) = pickle.load(open(file_name, "rb"))
        return (X_train, y_train), (X_test, y_test)
    data_format = normalize_data_format(data_format)
    all_dir_set = eachFile(pic_dir_data)
    X_train = []
    y_train = []
    X_test = []
    y_test = []

    for all_dir in all_dir_set:
        if not os.path.isdir(os.path.join(pic_dir_data, all_dir)):
            continue
        label = 0
        pic_dir_set = eachFile(os.path.join(pic_dir_data, all_dir))
        for pic_dir in pic_dir_set:
            print(pic_dir_data + pic_dir)
            if not os.path.isdir(os.path.join(pic_dir_data, all_dir, pic_dir)):
                continue
            pic_set = eachFile(os.path.join(pic_dir_data, all_dir, pic_dir))
            for pic_name in pic_set:
                if not os.path.isfile(
                        os.path.join(pic_dir_data, all_dir, pic_dir,
                                     pic_name)):
                    continue
                img = cv2.imread(
                    os.path.join(pic_dir_data, all_dir, pic_dir, pic_name))
                if img is None:
                    continue
                img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
                if resize:
                    img = cv2.resize(img, (Width, Height))
                if (data_format == 'channels_last'):
                    img = img.reshape(-1, Width, Height, 1)
                elif (data_format == 'channels_first'):
                    img = img.reshape(-1, 1, Width, Height)
                if ('train' in all_dir):
                    X_train.append(img)
                    y_train.append(label)
                elif ('test' in all_dir):
                    X_test.append(img)
                    y_test.append(label)
            if len(pic_set) != 0:
                label += 1
    X_train = np.concatenate(X_train, axis=0)
    X_test = np.concatenate(X_test, axis=0)
    y_train = np.array(y_train)
    y_test = np.array(y_test)
    pickle.dump([(X_train, y_train), (X_test, y_test)], open(file_name, "wb"))
    return (X_train, y_train), (X_test, y_test)
 def __init__(self, upsampling=(2, 2), data_format=None, **kwargs):
     """
     During its instantiation, it require two up sampling parameter.
     :param upsampling:
     :param data_format:
     :param kwargs:
     """
     super(BilinearUpsampling, self).__init__(**kwargs)
     self.data_format = normalize_data_format(data_format)
     self.upsampling = conv_utils.normalize_tuple(upsampling, 2, "size")
     self.input_spec = InputSpec(ndim=4)
Exemple #7
0
def get_data(data_name,
             train_percentage=0.7,
             resize=True,
             data_format=None):  #从文件夹中获取图像数据
    file_name = os.path.join(
        pic_dir_out, data_name + str(Width) + "X" + str(Height) + ".pkl")
    if os.path.exists(file_name):  #判断之前是否有存到文件中
        (X_train, y_train), (X_test,
                             y_test) = pickle.load(open(file_name, "rb"))
        return (X_train, y_train), (X_test, y_test)
    data_format = normalize_data_format(data_format)
    pic_dir_set = eachFile(pic_dir_data)
    X_train = []
    y_train = []
    X_test = []
    y_test = []
    label = 0
    for pic_dir in pic_dir_set:
        print(pic_dir_data + pic_dir)
        if not os.path.isdir(os.path.join(pic_dir_data, pic_dir)):
            continue
        pic_set = eachFile(os.path.join(pic_dir_data, pic_dir))
        pic_index = 0
        train_count = int(len(pic_set) * train_percentage)
        for pic_name in pic_set:
            if not os.path.isfile(os.path.join(pic_dir_data, pic_dir,
                                               pic_name)):
                continue
            img = cv2.imread(os.path.join(pic_dir_data, pic_dir, pic_name))
            if img is None:
                continue
            img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)  # BGR通道转单通道
            if (resize):
                img = cv2.resize(img, (Width, Height))  # 图片大小裁剪
            if (data_format == 'channels_last'):
                img = img.reshape(-1, Width, Height, 1)  # 图片形状调整
            elif (data_format == 'channels_first'):
                img = img.reshape(-1, 1, Width, Height)
            if (pic_index < train_count):
                X_train.append(img)
                y_train.append(label)
            else:
                X_test.append(img)
                y_test.append(label)
            pic_index += 1
        if len(pic_set) != 0:
            label += 1
    X_train = np.concatenate(X_train, axis=0)
    X_test = np.concatenate(X_test, axis=0)
    y_train = np.array(y_train)
    y_test = np.array(y_test)
    pickle.dump([(X_train, y_train), (X_test, y_test)], open(file_name, "wb"))
    return (X_train, y_train), (X_test, y_test)
Exemple #8
0
 def __init__(self, target_shape, offset=None, data_format=None, **kwargs):
     super(CroppingLike2D, self).__init__(**kwargs)
     self.data_format = normalize_data_format(data_format)
     self.target_shape = target_shape
     if offset is None or offset == 'centered':
         self.offset = 'centered'
     elif isinstance(offset, int):
         self.offset = (offset, offset)
     elif hasattr(offset, '__len__'):
         if len(offset) != 2:
             raise ValueError('`offset` should have two elements. '
                              'Found: ' + str(offset))
         self.offset = offset
     self.input_spec = InputSpec(ndim=4)
    def __init__(self, upsampling=(2, 2), output_size=None, data_format=None, **kwargs):

        super(BilinearUpsampling, self).__init__(**kwargs)

        self.data_format = normalize_data_format(data_format)
        self.input_spec = InputSpec(ndim=4)
        if output_size:
            self.output_size = conv_utils.normalize_tuple(
                output_size, 2, 'output_size')
            self.upsampling = None
        else:
            self.output_size = None
            self.upsampling = conv_utils.normalize_tuple(
                upsampling, 2, 'upsampling')
Exemple #10
0
    def __init__(self,
                 filters=1,
                 kernel_size=80,
                 rank=1,
                 strides=1,
                 padding='valid',
                 data_format='channels_last',
                 dilation_rate=1,
                 activation=None,
                 use_bias=True,
                 fsHz=1000.,
                 fc_initializer=initializers.RandomUniform(minval=10,
                                                           maxval=4000),
                 n_order_initializer=initializers.constant(4.),
                 amp_initializer=initializers.constant(10**5),
                 beta_initializer=initializers.RandomNormal(mean=30, stddev=6),
                 bias_initializer='zeros',
                 **kwargs):
        super(Conv1D_gammatone_coeff, self).__init__(**kwargs)
        self.rank = rank
        self.filters = filters
        self.kernel_size_ = kernel_size
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank,
                                                      'kernel_size')
        self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
        self.padding = conv_utils.normalize_padding(padding)
        self.data_format = normalize_data_format(data_format)
        self.dilation_rate = conv_utils.normalize_tuple(
            dilation_rate, rank, 'dilation_rate')
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.bias_initializer = initializers.get(bias_initializer)
        self.fc_initializer = initializers.get(fc_initializer)
        self.n_order_initializer = initializers.get(n_order_initializer)
        self.amp_initializer = initializers.get(amp_initializer)
        self.beta_initializer = initializers.get(beta_initializer)
        self.input_spec = InputSpec(ndim=self.rank + 2)

        self.fc = self.fc_initializer.__call__((self.filters, 1))
        self.n_order = self.n_order_initializer((1, 1))
        self.amp = self.amp_initializer((self.filters, 1))
        self.beta = self.beta_initializer((self.filters, 1))

        self.fsHz = fsHz
        self.t = tf.range(start=0,
                          limit=kernel_size / float(fsHz),
                          delta=1 / float(fsHz),
                          dtype=K.floatx())
        self.t = tf.expand_dims(input=self.t, axis=-1)
Exemple #11
0
 def __init__(self,
              size=(2, 2),
              num_pixels=(0, 0),
              data_format='channels_last',
              method_name='FgSegNet_M',
              **kwargs):
     super(MyUpSampling2D, self).__init__(**kwargs)
     self.data_format = normalize_data_format(data_format)
     self.size = conv_utils.normalize_tuple(size, 2, 'size')
     self.input_spec = InputSpec(ndim=4)
     self.num_pixels = num_pixels
     self.method_name = method_name
     print('MyUpsamling is being used')
     assert method_name in ['FgSegNet_M', 'FgSegNet_S', 'FgSegNet_v2'
                            ], 'Provided method_name is incorrect.'
Exemple #12
0
 def __init__(self,
              filters,
              kernel_size,
              rank=1,
              strides=1,
              padding='valid',
              data_format='channels_last',
              dilation_rate=1,
              activation=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              type=1,
              **kwargs):
     super(Conv1D_linearphaseType, self).__init__(**kwargs)
     self.rank = rank
     self.filters = filters
     self.kernel_size_ = kernel_size
     if kernel_size % 2:
         self.kernel_size = conv_utils.normalize_tuple(
             kernel_size // 2 + 1, rank, 'kernel_size')
     else:
         self.kernel_size = conv_utils.normalize_tuple(
             kernel_size // 2, rank, 'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = normalize_data_format(data_format)
     self.dilation_rate = conv_utils.normalize_tuple(
         dilation_rate, rank, 'dilation_rate')
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.input_spec = InputSpec(ndim=self.rank + 2)
     if type > 4:
         raise ValueError('FIR type should be between 1-4')
     else:
         self.type = type
Exemple #13
0
 def __init__(self,
              type=2,
              n=None,
              axis=-2,
              norm=None,
              rank=1,
              data_format='channels_last',
              **kwargs):
     super(DCT1D, self).__init__(**kwargs)
     self.rank = rank
     self.type = type
     self.n = n
     self.axis = axis
     self.norm = norm
     self.data_format = normalize_data_format(data_format)
     self.input_spec = InputSpec(ndim=self.rank + 2)
     if norm is not None:
         if norm != 'ortho':
             raise ValueError('Normalization should be `ortho` or `None`')
    def __init__(self, axis=-1,
                 gamma_init='one', beta_init='zero',
                 gamma_regularizer=None, beta_regularizer=None,
                 epsilon=1e-6,
                 group=32,
                 data_format=None,
                 **kwargs):
        super(GroupNormalization, self).__init__(**kwargs)

        self.axis = to_list(axis)
        self.gamma_init = initializers.get(gamma_init)
        self.beta_init = initializers.get(beta_init)
        self.gamma_regularizer = regularizers.get(gamma_regularizer)
        self.beta_regularizer = regularizers.get(beta_regularizer)
        self.epsilon = epsilon
        self.group = group
        self.data_format = normalize_data_format(data_format)#######

        self.supports_masking = True
Exemple #15
0
 def __init__(self,
              filters,
              kernel_size,
              rank=1,
              strides=1,
              padding='valid',
              data_format='channels_last',
              dilation_rate=1,
              activation=None,
              use_bias=True,
              kernel_initializer='glorot_uniform',
              bias_initializer='zeros',
              kernel_regularizer=None,
              bias_regularizer=None,
              activity_regularizer=None,
              kernel_constraint=None,
              bias_constraint=None,
              **kwargs):
     super(Conv1D_zerophase, self).__init__(**kwargs)
     self.rank = rank
     self.filters = filters
     self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank,
                                                   'kernel_size')
     self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
     self.padding = conv_utils.normalize_padding(padding)
     self.data_format = normalize_data_format(data_format)
     self.dilation_rate = conv_utils.normalize_tuple(
         dilation_rate, rank, 'dilation_rate')
     self.activation = activations.get(activation)
     self.use_bias = use_bias
     self.kernel_initializer = initializers.get(kernel_initializer)
     self.bias_initializer = initializers.get(bias_initializer)
     self.kernel_regularizer = regularizers.get(kernel_regularizer)
     self.bias_regularizer = regularizers.get(bias_regularizer)
     self.activity_regularizer = regularizers.get(activity_regularizer)
     self.kernel_constraint = constraints.get(kernel_constraint)
     self.bias_constraint = constraints.get(bias_constraint)
     self.input_spec = InputSpec(ndim=self.rank + 2)
Exemple #16
0
    def __init__(self, scale_factor=2, data_format=None, **kwargs):
        super(SubPixelUpscaling, self).__init__(**kwargs)

        self.scale_factor = scale_factor
        self.data_format = normalize_data_format(data_format)
Exemple #17
0
 def __init__(self, size=(2, 2), data_format=None, **kwargs):
     super(PixelShuffler, self).__init__(**kwargs)
     self.data_format = normalize_data_format(data_format)
     self.size = conv_utils.normalize_tuple(size, 2, 'size')
    def __init__(
            self,
            rank,
            filters,
            kernel_size,
            strides=1,
            padding='valid',
            data_format=None,
            dilation_rate=1,
            activation=None,  # key of activation
            use_bias=True,
            normalize_weight=False,
            kernel_initializer='he_complex',
            bias_initializer='zeros',
            gamma_diag_initializer=sqrt_init,
            gamma_off_initializer='zeros',
            kernel_regularizer=None,
            bias_regularizer=None,
            gamma_diag_regularizer=None,
            gamma_off_regularizer=None,
            activity_regularizer=None,
            kernel_constraint=None,
            bias_constraint=None,
            gamma_diag_constraint=None,
            gamma_off_constraint=None,
            init_criterion='he',
            seed=None,
            spectral_parametrization=False,
            transposed=False,
            epsilon=1e-7,
            **kwargs):
        super(_ComplexConv, self).__init__(**kwargs)
        self.rank = rank
        self.filters = filters
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank,
                                                      'kernel_size')
        self.strides = conv_utils.normalize_tuple(strides, rank, 'strides')
        self.padding = conv_utils.normalize_padding(padding)
        self.data_format = normalize_data_format(data_format)
        self.dilation_rate = conv_utils.normalize_tuple(
            dilation_rate, rank, 'dilation_rate')
        self.activation = activation
        self.use_bias = use_bias
        self.normalize_weight = normalize_weight
        self.init_criterion = init_criterion
        self.spectral_parametrization = spectral_parametrization
        self.transposed = transposed
        self.epsilon = epsilon
        self.kernel_initializer = sanitizedInitGet(kernel_initializer)
        self.bias_initializer = sanitizedInitGet(bias_initializer)
        self.gamma_diag_initializer = sanitizedInitGet(gamma_diag_initializer)
        self.gamma_off_initializer = sanitizedInitGet(gamma_off_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.gamma_diag_regularizer = regularizers.get(gamma_diag_regularizer)
        self.gamma_off_regularizer = regularizers.get(gamma_off_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.gamma_diag_constraint = constraints.get(gamma_diag_constraint)
        self.gamma_off_constraint = constraints.get(gamma_off_constraint)
        self.seed = seed if seed is not None else np.random.randint(1, 1e6)
        self.input_spec = InputSpec(ndim=self.rank + 2)

        # The following are initialized later
        self.kernel_shape = None
        self.kernel = None
        self.gamma_rr = None
        self.gamma_ii = None
        self.gamma_ri = None
        self.bias = None
Exemple #19
0
    def __init__(self, data_format=None):

        self.data_format = normalize_data_format(data_format)
Exemple #20
0
    def __init__(self,
                 rank,
                 filters,
                 kernel_size,
                 strides=1,
                 padding="valid",
                 data_format=None,
                 dilation_rate=1,
                 activation=None,
                 use_bias=True,
                 normalize_weight=False,
                 kernel_initializer="complex",
                 bias_initializer="zeros",
                 gamma_diag_initializer=sqrt_init,
                 gamma_off_initializer="zeros",
                 kernel_regularizer=None,
                 bias_regularizer=None,
                 gamma_diag_regularizer=None,
                 gamma_off_regularizer=None,
                 activity_regularizer=None,
                 kernel_constraint=None,
                 bias_constraint=None,
                 gamma_diag_constraint=None,
                 gamma_off_constraint=None,
                 init_criterion="he",
                 seed=None,
                 spectral_parametrization=False,
                 transposed=False,
                 epsilon=1e-7,
                 **kwargs):
        super(ComplexConv, self).__init__(**kwargs)
        self.rank = rank
        self.filters = filters
        self.kernel_size = conv_utils.normalize_tuple(kernel_size, rank,
                                                      "kernel_size")
        self.strides = conv_utils.normalize_tuple(strides, rank, "strides")
        self.padding = conv_utils.normalize_padding(padding)
        self.data_format = "channels_last" \
            if rank == 1 else normalize_data_format(data_format)
        self.dilation_rate = conv_utils.normalize_tuple(
            dilation_rate, rank, "dilation_rate")
        self.activation = activations.get(activation)
        self.use_bias = use_bias
        self.normalize_weight = normalize_weight
        self.init_criterion = init_criterion
        self.spectral_parametrization = spectral_parametrization
        self.transposed = transposed
        self.epsilon = epsilon
        self.kernel_initializer = sanitizedInitGet(kernel_initializer)
        self.bias_initializer = sanitizedInitGet(bias_initializer)
        self.gamma_diag_initializer = sanitizedInitGet(gamma_diag_initializer)
        self.gamma_off_initializer = sanitizedInitGet(gamma_off_initializer)
        self.kernel_regularizer = regularizers.get(kernel_regularizer)
        self.bias_regularizer = regularizers.get(bias_regularizer)
        self.gamma_diag_regularizer = regularizers.get(gamma_diag_regularizer)
        self.gamma_off_regularizer = regularizers.get(gamma_off_regularizer)
        self.activity_regularizer = regularizers.get(activity_regularizer)
        self.kernel_constraint = constraints.get(kernel_constraint)
        self.bias_constraint = constraints.get(bias_constraint)
        self.gamma_diag_constraint = constraints.get(gamma_diag_constraint)
        self.gamma_off_constraint = constraints.get(gamma_off_constraint)
        if seed is None:
            self.seed = np.random.randint(1, 10e6)
        else:
            self.seed = seed
        self.input_spec = InputSpec(ndim=self.rank + 2)

        # The following are initialized later
        self.kernel_shape = None
        self.kernel = None
        self.gamma_rr = None
        self.gamma_ii = None
        self.gamma_ri = None
        self.bias = None
Exemple #21
0
 def __init__(self, upsampling=(2, 2), data_format=None, **kwargs):
     super(BilinearUpsampling, self).__init__(**kwargs)
     self.data_format = common.normalize_data_format(data_format)
     # self.data_format = conv_utils.normalize_padding(data_format)
     self.upsampling = conv_utils.normalize_tuple(upsampling, 2, 'size')
     self.input_spec = InputSpec(ndim=4)
Exemple #22
0
 def __init__(self, size=(2, 2), data_format=None, **kwargs):
     super(BilinearUpSampling2D, self).__init__(**kwargs)
     #self.data_format = conv_utils.normalize_data_format(data_format)
     self.data_format = normalize_data_format(data_format)
     self.size = conv_utils.normalize_tuple(size, 2, 'size')
     self.input_spec = InputSpec(ndim=4)
Exemple #23
0
def get_data(train_left=0.0,
             train_right=0.7,
             train_all=0.7,
             resize=True,
             data_format=None,
             t=''):  # 从文件夹中获取图像数据
    # file_name = os.path.join(pic_dir_out, data_name + t + '_' + str(train_left) + '_' + str(train_right) + '_' + str(
    #     Width) + "X" + str(Height) + ".h5")
    #
    # if os.path.exists(file_name):  # 判断之前是否有存到文件中
    #     f = h5py.File(file_name, 'r')
    #     if t == 'train':
    #         X_train = f['X_train'][:]
    #         y_train = f['y_train'][:]
    #         f.close()
    #         return (X_train, y_train)
    #     elif t == 'test':
    #         X_test = f['X_test'][:]
    #         y_test = f['y_test'][:]
    #         f.close()
    #         return (X_test, y_test)
    #     else:
    #         return
    data_format = normalize_data_format(data_format)
    pic_dir_set = eachFile(pic_dir)
    X_train = []
    y_train = []
    X_test = []
    y_test = []
    label = 0
    for pic_dir_name in pic_dir_set:

        if not os.path.isdir(os.path.join(pic_dir,
                                          pic_dir_name)):  # 如果不是文件夹,跳过
            continue
        pic_set = eachFile(os.path.join(pic_dir, pic_dir_name))  # 图片列表
        pic_index = 0
        train_count = int(len(pic_set) * train_all)  # 训练样本数目
        train_l = int(len(pic_set) * train_left)
        train_r = int(len(pic_set) * train_right)
        for pic_name in pic_set:
            if not os.path.isfile(os.path.join(pic_dir, pic_dir_name,
                                               pic_name)):
                continue
            img = cv2.imread(os.path.join(pic_dir, pic_dir_name, pic_name))
            if img is None:
                continue
            if (resize):
                img = cv2.resize(img, (Width, Height))
                img = img.reshape(-1, Width, Height, 3)
            if (pic_index < train_count):  # 统计数量
                if t == 'train':
                    if (pic_index >= train_l and pic_index < train_r):
                        X_train.append(img)
                        y_train.append(label)
            else:
                if t == 'test':
                    X_test.append(img)
                    y_test.append(label)
            pic_index += 1
        if not len(pic_set) == 0:
            label += 1

    # f = h5py.File(file_name, 'w')
    return (X_train, y_train)