Exemple #1
0
model4.add(Dropout(0.2))

model4.add(Dense(300))
model4.add(Dropout(0.2))
model4.add(BatchNormalization())
model5 = Sequential()
model5.add(Embedding(len(word_index) + 1, 300, input_length=40, dropout=0.2))
model5.add(LSTM(300, dropout_W=0.2, dropout_U=0.2))

model6 = Sequential()
model6.add(Embedding(len(word_index) + 1, 300, input_length=40, dropout=0.2))
model6.add(LSTM(300, dropout_W=0.2, dropout_U=0.2))

merged_model = Sequential()
merged_model.add(
    Merge([model1, model2, model3, model4, model5, model6], mode='concat'))
merged_model.add(BatchNormalization())

merged_model.add(Dense(300))
merged_model.add(PReLU())
merged_model.add(Dropout(0.2))
merged_model.add(BatchNormalization())

merged_model.add(Dense(300))
merged_model.add(PReLU())
merged_model.add(Dropout(0.2))
merged_model.add(BatchNormalization())

merged_model.add(Dense(300))
merged_model.add(PReLU())
merged_model.add(Dropout(0.2))
Exemple #2
0
def what_d(runtimes=1, renew=True, maxlen=100, file_id=3):

    [
        glove, [char_X_100, char_X_010, char_X_001, char_Y_10, char_Y_01],
        [word_lens]
    ] = readfile(file_id=file_id)

    char_X_010 = min(char_X_010, maxlen)

    vocab = []
    X = np.zeros((char_X_100, char_X_010, char_X_001), dtype=np.bool)
    y = np.zeros((char_Y_10, char_Y_01), dtype=np.float64)

    ii = 0
    for i in range(0, word_lens):
        ttt = glove[i].split()
        ttt_lens = len(ttt)
        lists = ["".join(ttt[0:ttt_lens - char_Y_01])
                 ] + ttt[ttt_lens - char_Y_01:]
        lists[0] = re.sub("[^0-9a-zA-Z]", "", lists[0].lower())
        if 0 < len(lists[0]) <= maxlen:
            #print(ii, i)
            vocab.append(lists[0])
            text = lists[0].ljust(char_X_010)
            for j in range(0, char_X_010):
                X[ii, j, char_indices[text[j]]] = 1
            for k in range(1, char_Y_01 + 1):
                y[ii, k - 1] = lists[k]
            ii = ii + 1
            if i % 40000 == 0:
                print(i)

    # Find par.
    lens = []
    for word in vocab:
        lens.append(len(word))
    print(max(lens))  # min(maxlen, char_X_010)
    print(len(vocab))  # 399488
    char_X_100 = len(vocab)
    char_Y_10 = len(vocab)
    X = X[0:len(vocab)]
    y = y[0:len(vocab)]

    # First time: build the model: a bidirectional SimpleRNN
    if renew == True:
        print('Build model...')
        left = Sequential()
        left.add(
            GRU(char_Y_01,
                input_shape=(char_X_010, char_X_001),
                activation='tanh',
                inner_activation='sigmoid',
                dropout_W=0.5,
                dropout_U=0.5))
        #dropout_W=0.5, dropout_U=0.5))
        right = Sequential()
        right.add(
            GRU(char_Y_01,
                input_shape=(char_X_010, char_X_001),
                activation='tanh',
                inner_activation='sigmoid',
                dropout_W=0.5,
                dropout_U=0.5,
                go_backwards=True))
        #dropout_W=0.5, dropout_U=0.5, go_backwards=True))
        model = Sequential()
        model.add(Merge([left, right], mode='sum'))
        model.add(Dense((char_Y_01), activation='sigmoid'))
        model.compile('Adadelta', 'MSE', metrics=['accuracy'])
        model.fit([X, X], y, batch_size=512, nb_epoch=1)
        model.save(path + "layer_2/bi_GRU_merge__dense" + str(file_id) + ".pk")

    # Not first time: build the model: a bidirectional LSTM

    print('Load model...')
    model = load_model(path + "layer_2/bi_GRU_merge__dense" + str(file_id) +
                       ".pk")
    for j in range(0, runtimes - 1):
        print('Build model...')
        model.fit([X, X], y, batch_size=512, nb_epoch=1)
        model.save(path + "layer_2/bi_GRU_merge__dense" + str(file_id) + ".pk")

    # Test cosine similarity, train set

    print('Test cosine similarity, train set')
    cos = []
    for i in range(0, len(vocab)):
        text = vocab[i].ljust(char_X_010)
        x = np.zeros((1, char_X_010, char_X_001), dtype=np.bool)
        for j in range(0, len(text)):
            x[0, j, char_indices[text[j]]] = 1
        map_LSTM = model.predict([x, x], verbose=0)

        map_GloVe = y[i]

        cos.append(1 - spatial.distance.cosine(map_LSTM, map_GloVe))
    f = open(path + "layer_2/cosine.txt", 'a')
    f.write("20 times bi_GRU_merge__dense" + str(file_id) +
            " cosine similarity: " + str(sum(cos) / len(cos)) + "\n")
    f.close()

    # Test cosine similarity, misspelling

    print('Test cosine similarity, misspelling')
    cos = []
    change_engs = [
        'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n',
        'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z'
    ]
    for i in range(0, len(vocab)):
        misspelling = vocab[i]
        if len(misspelling) > 4:
            loc = int(np.random.uniform(0, 1, 1) * len(misspelling))
            cha = int(np.random.uniform(0, 1, 1) * 26)

            tem = list(misspelling)
            tem[loc] = change_engs[cha]

            misspelling = "".join(tem)
            text = misspelling.ljust(char_X_010)
            x = np.zeros((1, char_X_010, char_X_001), dtype=np.bool)
            for j in range(0, len(text)):
                x[0, j, char_indices[text[j]]] = 1
            map_LSTM = model.predict([x, x], verbose=0)
            map_GloVe = y[i]

            cos.append(1 - spatial.distance.cosine(map_LSTM, map_GloVe))
    f = open(path + "layer_2/cosine.txt", 'a')
    f.write("20 times bi_GRU_merge__dense" + str(file_id) +
            " misspelling cosine similarity : " + str(sum(cos) / len(cos)) +
            ", len: " + str(len(cos)) + "\n")
    f.close()
# Model for wld
model_wld = Sequential()
model_wld.add(
    Dense(numFeatures_wld,
          input_dim=numFeatures_wld,
          init='glorot_uniform',
          activation='relu'))
model_wld.add(GaussianNoise(3))
model_wld.add(Dropout(0.3))
model_wld.add(Dense(numFeatures_wld, activation='relu'))
model_wld.add(Dropout(0.3))

#Merge all models
model_merged = Sequential()
model_merged.add(
    Merge([model_bsif, model_lpq, model_wld], mode='concat', concat_axis=1))
model_merged.add(Dense(1, activation='sigmoid'))

#Show some debug output
print(model_merged.summary())

#compile model
opt = Adadelta()
model_merged.compile(loss='binary_crossentropy',
                     optimizer=opt,
                     metrics=['accuracy'])

#fit the model
hist = model_merged.fit(
    [feature_train_bsif, feature_train_lpq, feature_train_wld],
    target_train_bsif,
    def build(self):
        enc_size = self.size_of_env_observation()
        argument_size = IntegerArguments.size_of_arguments
        input_enc = InputLayer(batch_input_shape=(self.batch_size, enc_size),
                               name='input_enc')
        input_arg = InputLayer(batch_input_shape=(self.batch_size,
                                                  argument_size),
                               name='input_arg')
        input_prg = Embedding(input_dim=PROGRAM_VEC_SIZE,
                              output_dim=PROGRAM_KEY_VEC_SIZE,
                              input_length=1,
                              batch_input_shape=(self.batch_size, 1))

        f_enc = Sequential(name='f_enc')
        f_enc.add(Merge([input_enc, input_arg], mode='concat'))
        f_enc.add(MaxoutDense(128, nb_feature=4))
        self.f_enc = f_enc

        program_embedding = Sequential(name='program_embedding')
        program_embedding.add(input_prg)

        f_enc_convert = Sequential(name='f_enc_convert')
        f_enc_convert.add(f_enc)
        f_enc_convert.add(RepeatVector(1))

        f_lstm = Sequential(name='f_lstm')
        f_lstm.add(Merge([f_enc_convert, program_embedding], mode='concat'))
        f_lstm.add(
            LSTM(256,
                 return_sequences=False,
                 stateful=True,
                 W_regularizer=l2(0.0000001)))
        f_lstm.add(Activation('relu', name='relu_lstm_1'))
        f_lstm.add(RepeatVector(1))
        f_lstm.add(
            LSTM(256,
                 return_sequences=False,
                 stateful=True,
                 W_regularizer=l2(0.0000001)))
        f_lstm.add(Activation('relu', name='relu_lstm_2'))
        # plot(f_lstm, to_file='f_lstm.png', show_shapes=True)

        f_end = Sequential(name='f_end')
        f_end.add(f_lstm)
        f_end.add(Dense(1, W_regularizer=l2(0.001)))
        f_end.add(Activation('sigmoid', name='sigmoid_end'))

        f_prog = Sequential(name='f_prog')
        f_prog.add(f_lstm)
        f_prog.add(Dense(PROGRAM_KEY_VEC_SIZE, activation="relu"))
        f_prog.add(Dense(PROGRAM_VEC_SIZE, W_regularizer=l2(0.0001)))
        f_prog.add(Activation('softmax', name='softmax_prog'))
        # plot(f_prog, to_file='f_prog.png', show_shapes=True)

        f_args = []
        for ai in range(1, IntegerArguments.max_arg_num + 1):
            f_arg = Sequential(name='f_arg%s' % ai)
            f_arg.add(f_lstm)
            f_arg.add(Dense(IntegerArguments.depth, W_regularizer=l2(0.0001)))
            f_arg.add(Activation('softmax', name='softmax_arg%s' % ai))
            f_args.append(f_arg)
        # plot(f_arg, to_file='f_arg.png', show_shapes=True)

        self.model = Model([input_enc.input, input_arg.input, input_prg.input],
                           [f_end.output, f_prog.output] +
                           [fa.output for fa in f_args],
                           name="npi")
        self.compile_model()
        plot(self.model, to_file='model.png', show_shapes=True)
model1.add(input_0)

model2 = Sequential()
model2.add(input_45)

if debug: print model1.output_shape

model = Sequential()

model.add(
    Merge(
        [model1, model2],
        mode=kaggle_input,
        output_shape=lambda x: (BATCH_SIZE * 4 * N_INPUT_VARIATION,
                                NUM_INPUT_FEATURES, PART_SIZE, PART_SIZE),
        arguments={
            'part_size': PART_SIZE,
            'n_input_var': N_INPUT_VARIATION,
            'include_flip': False,
            'random_flip': True
        }))

if debug: print model.output_shape

model.add(fPermute((1, 2, 3, 0)))

if debug: print model.output_shape

model.add(
    kerasCudaConvnetConv2DLayer(n_filters=32, filter_size=6,
                                untie_biases=True))
model4.add(GlobalMaxPooling1D())
model4.add(Dropout(0.2))

model4.add(Dense(200))
model4.add(Dropout(0.2))
model4.add(BatchNormalization())
model5 = Sequential()
model5.add(Embedding(len(word_index) + 1, 300, input_length=max_len, dropout=0.2))
model5.add(LSTM(300, dropout_W=0.2, dropout_U=0.2))

model6 = Sequential()
model6.add(Embedding(len(word_index) + 1, 300, input_length=max_len, dropout=0.2))
model6.add(LSTM(300, dropout_W=0.2, dropout_U=0.2))

merged_model = Sequential()
merged_model.add(Merge([model1, model2, model3, model4], mode='concat')) # model1, model2,, model5, model6
merged_model.add(BatchNormalization())

merged_model.add(Dense(200))
merged_model.add(PReLU())
merged_model.add(Dropout(0.2))
merged_model.add(BatchNormalization())

merged_model.add(Dense(200))
merged_model.add(PReLU())
merged_model.add(Dropout(0.2))
merged_model.add(BatchNormalization())

merged_model.add(Dense(200))
merged_model.add(PReLU())
merged_model.add(Dropout(0.2))
model1.add(LSTM(300, dropout_W=0.2, dropout_U=0.2))

model2 = Sequential()
model2.add(Embedding(len(word_index) + 1, 300, input_length=40, dropout=0.2))
model2.add(LSTM(300, dropout_W=0.2, dropout_U=0.2))
'''
distance_model = Sequential()
distance_model.add(Lambda(euclidean_distance)([model1, model2]))


angle_model = Sequential()
angle_model.add(Lambda(dot_prod)([model1, model2]))
'''
merged_model = Sequential()

merged_model.add(Merge([model1, model2], mode='concat'))

merged_model.add(BatchNormalization())

merged_model.add(Dense(300))
merged_model.add(PReLU())
merged_model.add(Dropout(0.2))
merged_model.add(BatchNormalization())

merged_model.add(Dense(300))
merged_model.add(PReLU())
merged_model.add(Dropout(0.2))
merged_model.add(BatchNormalization())

merged_model.add(Dense(300))
merged_model.add(PReLU())
Exemple #8
0
tr = records[:splitPoint, ]
ts = records[splitPoint:, ]

L = tr.shape[0]
M = ts.shape[0]

user_count = 6040 + 1
item_count = 3952 + 1

model_left = Sequential()
model_left.add(Embedding(user_count, 20, input_length=1))
model_right = Sequential()
model_right.add(Embedding(item_count, 20, input_length=1))
model = Sequential()
model.add(Merge([model_left, model_right], mode='concat'))
print(model.output_shape)
model.add(Flatten())
print(model.output_shape)
model.add(Dense(20))
model.add(Activation('sigmoid'))
model.add(Dense(1))
model.compile(loss='mean_squared_error',
              optimizer=SGD(lr=0.1, momentum=0., decay=0., nesterov=False))

model.fit(
    [tr[:, 0].reshape((L, 1)), tr[:, 1].reshape((L, 1))],
    tr[:, 2].reshape((L, 1)),
    batch_size=32,
    nb_epoch=20,
    validation_data=([ts[:, 0].reshape((M, 1)), ts[:, 1].reshape(
y_train = x_train['is_duplicate'].apply(pd.to_numeric).values


model = Sequential()
print('Build model...')

model5 = Sequential()
model5.add(Embedding(120000 + 1, 300, input_length=300, dropout=0.2))
model5.add(LSTM(300, dropout_W=0.2, dropout_U=0.2))

model6 = Sequential()
model6.add(Embedding(120000 + 1, 300, input_length=300, dropout=0.2))
model6.add(LSTM(300, dropout_W=0.2, dropout_U=0.2))

merged_model = Sequential()
merged_model.add(Merge([model5, model6], mode='concat'))
merged_model.add(BatchNormalization())

merged_model.add(Dense(300))
merged_model.add(PReLU())
merged_model.add(Dropout(0.2))
merged_model.add(BatchNormalization())

#merged_model.add(Dense(300))
#merged_model.add(PReLU())
#merged_model.add(Dropout(0.2))
#merged_model.add(BatchNormalization())
#
#merged_model.add(Dense(300))
#merged_model.add(PReLU())
#merged_model.add(Dropout(0.2))