def get_config(self): config = {'units': self.units, 'projection_units': self.projection_units, 'activation': activations.serialize(self.activation), 'recurrent_activation': activations.serialize(self.recurrent_activation), 'projection_activation': activations.serialize(self.projection_activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'projection_initializer': initializers.serialize(self.projection_initializer), 'unit_forget_bias': self.unit_forget_bias, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'recurrent_regularizer': regularizers.serialize(self.recurrent_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'projection_regularizer': regularizers.serialize(self.projection_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'recurrent_constraint': constraints.serialize(self.recurrent_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'projection_constraint': constraints.serialize(self.projection_constraint), 'dropout': self.dropout, 'recurrent_dropout': self.recurrent_dropout, 'implementation': self.implementation} base_config = super(NASRNN, self).get_config() del base_config['cell'] return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = {'filters': self.filters, 'kernel_size': self.kernel_size, 'strides': self.strides, 'padding': self.padding, 'data_format': self.data_format, 'dilation_rate': self.dilation_rate, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'input_dim': self.input_dim, 'learnedKernel': self.tied_to.get_weights()[0], 'input_length': self.input_length} config2 = {'layer_inner': {'bias': np.asarray(self.tied_to.get_weights()[1]), 'weights': np.asarray(self.tied_to.get_weights()[0]), 'class_name': self.tied_to.__class__.__name__, 'config': self.tied_to.get_config()}} base_config = super(Convolution1D_tied, self).get_config() return dict(list(base_config.items()) + list(config.items()) + list(config2.items()))
def get_config(self): config = {'epsilon': self.epsilon, 'axis': self.axis, 'gamma_init': initializers.serialize(self.gamma_init), 'beta_init': initializers.serialize(self.beta_init), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_regularizer': regularizers.serialize(self.gamma_regularizer), 'group': self.group} base_config = super(GroupNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'alpha_initializer': initializers.serialize(self.alpha_initializer), 'alpha_regularizer': regularizers.serialize(self.alpha_regularizer), 'alpha_constraint': constraints.serialize(self.alpha_constraint), 'beta_initializer': initializers.serialize(self.beta_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'shared_axes': self.shared_axes } base_config = super(ParametricSoftplus, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = {'output_dim': self.output_dim, 'W_initializer':initializers.serialize(self.W_initializer), 'b_initializer':initializers.serialize(self.W_initializer), 'activation': activations.serialize(self.activation), 'W_regularizer': self.W_regularizer.get_config() if self.W_regularizer else None, 'b_regularizer': self.b_regularizer.get_config() if self.b_regularizer else None, 'activity_regularizer': self.activity_regularizer.get_config() if self.activity_regularizer else None, 'W_constraint': self.W_constraint.get_config() if self.W_constraint else None, 'b_constraint': self.b_constraint.get_config() if self.b_constraint else None, 'input_dim': self.input_dim} base_config = super(SparseFullyConnectedLayer, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = {'sigsize': self.sigsize, 'sig_level': self.sig_level, 'train_time_lapse': self.train_time_lapse, 'initial_time_lapse': self.initial_time_lapse, 'n_units': self.n_units, 'units': self.units, 'output_signatures' : self.output_signatures, 'use_signatures' : self.use_signatures, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'recurrent_initializer': initializers.serialize(self.recurrent_initializer), 'activation': self.activation.__name__} base_config = super(RecurrentSig, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'axis': self.axis, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint) } base_config = super(InstanceNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = {'nb_complex': self.nb_complex, 'filter_delays':self.filter_delays, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint)} base_config = super(SpatioTemporalFilterComplex, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'a_initializer': initializers.serialize(self.a_initializer), 'a_regularizer': regularizers.serialize(self.a_regularizer), 'a_constraint': constraints.serialize(self.a_constraint), 'k_initializer': initializers.serialize(self.k_initializer), 'k_regularizer': regularizers.serialize(self.k_regularizer), 'k_constraint': constraints.serialize(self.k_constraint), 'n_initializer': initializers.serialize(self.n_initializer), 'n_regularizer': regularizers.serialize(self.n_regularizer), 'n_constraint': constraints.serialize(self.n_constraint), 'z_initializer': initializers.serialize(self.z_initializer), 'z_regularizer': regularizers.serialize(self.z_regularizer), 'z_constraint': constraints.serialize(self.z_constraint), 'shared_axes': self.shared_axes } base_config = super(Hill, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'vv_theta': self.vv, 'axis': self.axis, 'momentum': self.momentum, 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'moving_mean_initializer': initializers.serialize(self.moving_mean_initializer), 'moving_variance_initializer': initializers.serialize(self.moving_variance_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint) } base_config = super(RProjFWH_BatchNormalization, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'filters': self.filters, 'kernel_size': self.kernel_size, 'strides': self.strides, 'padding': self.padding, 'data_format': self.data_format, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(LocallyConnected2D, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = super(DepthwiseConv2D, self).get_config() config.pop('filters') config.pop('kernel_initializer') config.pop('kernel_regularizer') config.pop('kernel_constraint') config['depth_multiplier'] = self.depth_multiplier config['depthwise_initializer'] = initializers.serialize(self.depthwise_initializer) config['depthwise_regularizer'] = regularizers.serialize(self.depthwise_regularizer) config['depthwise_constraint'] = constraints.serialize(self.depthwise_constraint) return config
def get_config(self): config = {'init': initializers.serialize(self.init), 'activation': activations.serialize(self.activation), 'W_regularizer': regularizers.serialize(self.W_regularizer), 'b_regularizer': regularizers.serialize(self.b_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'W_constraint': constraints.serialize(self.W_constraint), 'b_constraint': constraints.serialize(self.b_constraint), 'bias': self.bias, 'input_dim': self.input_dim} base_config = super(Highway, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'alpha_pos_initializer': initializers.serialize(self.alpha_pos_initializer), 'alpha_neg_initializer': initializers.serialize(self.alpha_neg_initializer), 'beta_pos_initializer': initializers.serialize(self.beta_pos_initializer), 'beta_neg_initializer': initializers.serialize(self.beta_neg_initializer), 'rho_pos_initializer': initializers.serialize(self.rho_pos_initializer), 'rho_neg_initializer': initializers.serialize(self.rho_neg_initializer), 'alpha_pos_constraint': constraints.serialize(self.alpha_pos_constraint), 'alpha_neg_constraint': constraints.serialize(self.alpha_neg_constraint), 'beta_pos_constraint': constraints.serialize(self.beta_pos_constraint), 'beta_neg_constraint': constraints.serialize(self.beta_neg_constraint), 'rho_pos_constraint': constraints.serialize(self.rho_pos_constraint), 'rho_neg_constraint': constraints.serialize(self.rho_neg_constraint), 'alpha_pos_regularizer': regularizers.serialize(self.alpha_pos_regularizer), 'alpha_neg_regularizer': regularizers.serialize(self.alpha_neg_regularizer), 'beta_pos_regularizer': regularizers.serialize(self.beta_pos_regularizer), 'beta_neg_regularizer': regularizers.serialize(self.beta_neg_regularizer), 'rho_pos_regularizer': regularizers.serialize(self.rho_pos_regularizer), 'rho_neg_regularizer': regularizers.serialize(self.rho_neg_regularizer), } base_config = super(PowerPReLU, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): """Return the configuration for building the layer.""" config = dict( units=self.units, is_first=self.is_first, is_last=self.is_last, attention_factor=self.attention_factor, dropout=self.dropout, mean_activation=activations.serialize(self.mean_activation), mean_initializer=initializers.serialize(self.mean_initializer), mean_regularizer=regularizers.serialize(self.mean_regularizer), mean_constraint=constraints.serialize(self.mean_constraint), variance_activation=activations.serialize( self.variance_activation), variance_initializer=initializers.serialize( self.variance_initializer), variance_regularizer=regularizers.serialize(self.mean_regularizer), variance_constraint=constraints.serialize( self.variance_constraint), last_activation=activations.serialize(self.last_activation), ) # get items from the parent class and combine them with this layer base_config = super().get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): # Remember to record all args of the `__init__` # which are not covered by `GRUCell`. config = {'x_imputation': self.x_imputation, 'input_decay': serialize_keras_object(self.input_decay), 'hidden_decay': serialize_keras_object(self.hidden_decay), 'use_decay_bias': self.use_decay_bias, 'feed_masking': self.feed_masking, 'masking_decay': serialize_keras_object(self.masking_decay), 'decay_initializer': initializers.serialize(self.decay_initializer), 'decay_regularizer': regularizers.serialize(self.decay_regularizer), 'decay_constraint': constraints.serialize(self.decay_constraint) } base_config = super(GRUDCell, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { "num_heads": self._num_heads, "key_dim": self._key_dim, "value_dim": self._value_dim, "dropout": self._dropout, "use_bias": self._use_bias, "output_shape": self._output_shape, "attention_axes": self._attention_axes, "kernel_initializer": initializers.serialize(self._kernel_initializer), "bias_initializer": initializers.serialize(self._bias_initializer), "kernel_regularizer": regularizers.serialize(self._kernel_regularizer), "bias_regularizer": regularizers.serialize(self._bias_regularizer), "activity_regularizer": regularizers.serialize(self._activity_regularizer), "kernel_constraint": constraints.serialize(self._kernel_constraint), "bias_constraint": constraints.serialize(self._bias_constraint), "query_shape": self._query_shape, "key_shape": self._key_shape, "value_shape": self._value_shape, } base_config = super(MultiHeadAttention, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'input_dim': self.input_dim, 'output_dim': self.output_dim, 'embeddings_initializer': initializers.serialize(self.embeddings_initializer), 'embeddings_regularizer': regularizers.serialize(self.embeddings_regularizer), 'embeddings_constraint': constraints.serialize(self.embeddings_constraint), } base_config = super(Embedding2D, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'kernel_size': self.kernel_size, 'num_capsule': self.num_capsule, 'num_atoms': self.num_atoms, 'strides': self.strides, 'padding': self.padding, 'routings': self.routings, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'epsilon': self.epsilon, 'center': self.center, 'scale': self.scale, 'beta_initializer': initializers.serialize(self.beta_initializer), 'gamma_initializer': initializers.serialize(self.gamma_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'gamma_regularizer': regularizers.serialize(self.gamma_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'gamma_constraint': constraints.serialize(self.gamma_constraint) } base_config = super(ConvCapsuleLayer, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'init': initializers.serialize(self.init), 'U_regularizer': regularizers.serialize(self.U_regularizer), 'b_start_regularizer': regularizers.serialize(self.b_start_regularizer), 'b_end_regularizer': regularizers.serialize(self.b_end_regularizer), 'U_constraint': constraints.serialize(self.U_constraint), 'b_start_constraint': constraints.serialize(self.b_start_constraint), 'b_end_constraint': constraints.serialize(self.b_end_constraint) } base_config = super(ChainCRF, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'input_dim': self.input_dim, 'output_dim': self.output_dim, 'merge_mode': self.merge_mode, 'embeddings_initializer': initializers.serialize(self.embeddings_initializer), 'custom_position_ids': self.custom_position_ids, } base_config = super(PositionEmbedding, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'activation': activations.serialize(self.activation), 'bias_initializer': initializers.serialize(self.bias_initializer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(Bias, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = super(DepthwiseConv2D, self).get_config() config.pop('filters') config.pop('kernel_initializer') config.pop('kernel_regularizer') config.pop('kernel_constraint') config['depth_multiplier'] = self.depth_multiplier config['depthwise_initializer'] = initializers.serialize( self.depthwise_initializer) config['depthwise_regularizer'] = regularizers.serialize( self.depthwise_regularizer) config['depthwise_constraint'] = constraints.serialize( self.depthwise_constraint) return config
def get_config(self): config = { 'heads': self.heads, 'head_size': self.head_size, 'out_dim': self.out_dim, 'key_size': self.key_size, 'use_bias': self.use_bias, 'attention_scale': self.attention_scale, 'attention_dropout': self.attention_dropout, 'return_attention_scores': self.return_attention_scores, 'kernel_initializer': initializers.serialize(self.kernel_initializer), } base_config = super(MultiHeadAttention, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): """ Gets class configuration for Keras serialization. Used by keras model serialization. Returns: A dictionary that contains the config of the layer """ config = { "units": self.units, "use_bias": self.use_bias, "support": self.support, "activation": activations.serialize(self.activation), "kernel_initializer": initializers.serialize(self.kernel_initializer), "bias_initializer": initializers.serialize(self.bias_initializer), "kernel_regularizer": regularizers.serialize(self.kernel_regularizer), "bias_regularizer": regularizers.serialize(self.bias_regularizer), "activity_regularizer": regularizers.serialize(self.activity_regularizer), "kernel_constraint": constraints.serialize(self.kernel_constraint), "bias_constraint": constraints.serialize(self.bias_constraint), } base_config = super().get_config() return {**base_config, **config}
def get_config(self): """ To serialize the model given and generate all related parameters Returns ------- """ config = {'kernel_initializer': initializers.serialize(self.kernel_initializer), 'activation': self.activation.__name__, 'dim_ordering': self.dim_ordering, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'eps': self.eps, 'cov_mode': self.cov_mode } base_config = super(SecondaryStatistic, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = super(myDense, self).get_config() config.update({ "units": self.units, "activation": activations.serialize(self.activation), "bias": self.bias, "weight_initializer": initializers.serialize(self.weight_initializer), "weight_regularizer": regularizers.serialize(self.weight_regularizer), }) return config
def get_config(self): config = { 'activation': activations.serialize(self.activation), 'W_initializer': initializers.serialize(self.W_initializer), 'W1_regularizer': regularizers.serialize(self.W1_regularizer), 'W2_regularizer': regularizers.serialize(self.W2_regularizer), 'W1_constraint': constraints.serialize(self.W1_constraint), 'W2_constraint': constraints.serialize(self.W2_constraint), 'da': self.da, 'r': self.r, 'return_attention': self.return_attention, 'attention_regularizer_weight': self.attention_regularizer_weight, 'hidden': self.hidden } base_config = super(Attention, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'kernel_size': self.kernel_size, 'num_capsule': self.num_capsule, 'num_atoms': self.num_atoms, 'strides': self.strides, 'padding': self.padding, 'routings': self.routings, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'squash': self.squash, 'squash_activation': self.squash_activation, 'individual_kernels_per_type': self.individual_kernels_per_type } base_config = super(ConvCapsuleLayer, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = {'filters': self.filters, 'kernel_size': self.kernel_size, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'activation': activations.serialize(self.activation), 'padding': self.padding, 'strides': self.strides, 'data_format': self.data_format, 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'bias_regularizer': regularizers.serialize(self.bias_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), 'bias_constraint': constraints.serialize(self.bias_constraint), 'use_bias': self.use_bias} base_config = super(CosineConvolution2D, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'k': self.k, 'channels': self.channels, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), } base_config = super(DiffPool, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'ratio': self.ratio, 'return_mask': self.return_mask, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), } base_config = super(TopKPool, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'beta_initializer': initializers.serialize(self.beta_initializer), 'beta_regularizer': regularizers.serialize(self.beta_regularizer), 'beta_constraint': constraints.serialize(self.beta_constraint), 'norm_axis': self.norm_axis, 'signal_regularizer': regularizers.serialize(self.output_regularizers[0]), 'diss_regularizer': regularizers.serialize(self.output_regularizers[1]) } super_config = super(GibbsRouting, self).get_config() return dict(list(super_config.items()) + list(config.items()))
def get_config(self): config = { 'input_dim': self.input_dim, 'output_dim': self.output_dim, 'embeddings_initializer': initializers.serialize(self.embeddings_initializer), 'embeddings_regularizer': regularizers.serialize(self.embeddings_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'embeddings_constraint': constraints.serialize(self.embeddings_constraint), 'mask_zero': self.mask_zero, 'input_length': self.input_length } base_config = super(Embedding, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'units': self.units, 'activation': activations.serialize(self.activation), 'use_bias': self.use_bias, 'kernel_initializer': initializers.serialize(self.kernel_initializer), # 'bias_initializer': initializers.serialize(self.bias_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), # 'bias_regularizer': regularizers.serialize(self.bias_regularizer), # 'activity_regularizer': regularizers.serialize(self.activity_regularizer), # 'kernel_constraint': constraints.serialize(self.kernel_constraint), # 'bias_constraint': constraints.serialize(self.bias_constraint) } base_config = super(GraphConvolution, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'axes': self.axes, 'scope': self.scope, 'linear_map_initializer': initializers.serialize(self.bias_initializer), 'linear_map_regularizer': regularizers.serialize(self.bias_regularizer), 'linear_map_constraint': constraints.serialize(self.bias_constraint), 'signal_regularizer': regularizers.serialize(self.output_regularizers[0]) } super_config = super(AddBias, self).get_config() return dict(list(super_config.items()) + list(config.items()))
def get_config(self): config = { 'ch_j': self.ch_j, 'n_j': self.n_j, 'kernel_size': self.kernel_size, 'strides': self.strides, 'b_alphas': self.b_alphas, 'padding': self.padding, 'data_format': self.data_format, 'dilation_rate': self.dilation_rate, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint) } base_config = super(Conv2DCaps, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'output_dim': self.output_dim, 'axis': self.axis, 'scope': self.scope, 'linear_map_initializer': initializers.serialize(self.linear_map_initializer), 'linear_map_regularizer': regularizers.serialize(self.linear_map_regularizer), 'linear_map_constraint': constraints.serialize(self.linear_map_constraint) } super_config = super(LinearTransformation, self).get_config() return dict(list(super_config.items()) + list(config.items()))
def get_config(self): """Returns the config of the layer. A layer config is a Python dictionary (serializable) containing the configuration of a layer. The same layer can be reinstantiated later (without its trained weights) from this configuration. The config of a layer does not include connectivity information, nor the layer class name. These are handled by `Network` (one layer of abstraction above). # Returns Python dictionary. """ config = { 'size': self.size, 'initializer': initializers.serialize(self.initializer), 'regularizer': regularizers.serialize(self.regularizer) } base_config = Layer.get_config(self) return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { "units": self.units, "activation": activations.serialize(self.activation), "kernel_initializer": initializers.serialize(self.kernel_initializer), "kernel_regularizer": regularizers.serialize(self.kernel_regularizer), "activity_regularizer": regularizers.serialize(self.activity_regularizer), "kernel_constraint": constraints.serialize(self.kernel_constraint), 'num_bits': num_bits } base_config = super(QuantizedDense, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'prototype_initializer': initializers.serialize(self.prototype_initializer), 'prototype_regularizer': regularizers.serialize(self.prototype_regularizer), 'prototype_constraint': constraints.serialize(self.prototype_constraint), 'signal_output': self.signal_output, 'linear_factor': self.linear_factor, 'signal_regularizer': regularizers.serialize(self.output_regularizers[0]), 'diss_regularizer': regularizers.serialize(self.output_regularizers[1]) } super_config = super(PointPrototype, self).get_config() return dict(list(super_config.items()) + list(config.items()))
def get_config(self): config = { 'kernel_size': self.kernel_size, 'filters': self.filters, 'num_capsule': self.num_capsule, 'strides': self.strides, 'padding': self.padding, 'routings': self.routings, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'activation_fn': self.activation_fn, 'agreement': self.agreement, 'emphasis': self.emphasis, 'return_route_last': self.return_route_last, 'reverse_routing': self.reverse_routing, 'shared_child': self.shared_child, 'shared_parent': self.shared_parent } base_config = super(ConvGlobalLocalCapsuleLayer, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'output_dim': self.output_dim, 'init': initializers.serialize(self.init), 'nb_feature': self.nb_feature, 'b_regularizer': regularizers.serialize(self.b_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'b_constraint': constraints.serialize(self.b_constraint), 'bias': self.bias, 'input_dim': self.input_dim } base_config = super(MaxoutDense, self).get_config() return dict(list(base_config.items()) + list(config.items()))
def get_config(self): config = { 'ch_j': self.ch_j, 'n_j': self.n_j, 'r_num': self.r_num, 'b_alphas': self.b_alphas, 'kernel_initializer': initializers.serialize(self.kernel_initializer), 'kernel_regularizer': regularizers.serialize(self.kernel_regularizer), 'activity_regularizer': regularizers.serialize(self.activity_regularizer), 'kernel_constraint': constraints.serialize(self.kernel_constraint), } base_config = super(DenseCaps, self).get_config() return dict(list(base_config.items()) + list(config.items()))