def set_model(self, model: tf.keras.Model): self.model = model config = model.config self.config = config label_map = label_util.get_label_map(config.label_map) log_dir = os.path.join(config.model_dir, 'coco') self.file_writer = tf.summary.create_file_writer(log_dir) self.evaluator = coco_metric.EvaluationMetric( filename=config.val_json_file, label_map=label_map)
def main(_): config = hparams_config.get_efficientdet_config(FLAGS.model_name) config.override(FLAGS.hparams) config.val_json_file = FLAGS.val_json_file config.nms_configs.max_nms_inputs = anchors.MAX_DETECTION_POINTS config.drop_remainder = False # eval all examples w/o drop. config.image_size = utils.parse_image_size(config['image_size']) # Evaluator for AP calculation. label_map = label_util.get_label_map(config.label_map) evaluator = coco_metric.EvaluationMetric( filename=config.val_json_file, label_map=label_map) # dataset batch_size = 1 ds = dataloader.InputReader( FLAGS.val_file_pattern, is_training=False, max_instances_per_image=config.max_instances_per_image)( config, batch_size=batch_size) eval_samples = FLAGS.eval_samples if eval_samples: ds = ds.take((eval_samples + batch_size - 1) // batch_size) # Network lite_runner = LiteRunner(FLAGS.tflite_path) eval_samples = FLAGS.eval_samples or 5000 pbar = tf.keras.utils.Progbar((eval_samples + batch_size - 1) // batch_size) for i, (images, labels) in enumerate(ds): cls_outputs, box_outputs = lite_runner.run(images) detections = postprocess.generate_detections(config, cls_outputs, box_outputs, labels['image_scales'], labels['source_ids']) detections = postprocess.transform_detections(detections) evaluator.update_state(labels['groundtruth_data'].numpy(), detections.numpy()) pbar.update(i) # compute the final eval results. metrics = evaluator.result() metric_dict = {} for i, name in enumerate(evaluator.metric_names): metric_dict[name] = metrics[i] if label_map: for i, cid in enumerate(sorted(label_map.keys())): name = 'AP_/%s' % label_map[cid] metric_dict[name] = metrics[i + len(evaluator.metric_names)] print(FLAGS.model_name, metric_dict)
def estimator_metric_fn(self, detections, groundtruth_data, label_map=None): """Constructs the metric function for tf.TPUEstimator. For each metric, we return the evaluation op and an update op; the update op is shared across all metrics and simply appends the set of detections to the `self.detections` list. The metric op is invoked after all examples have been seen and computes the aggregate COCO metrics. Please find details API in: https://www.tensorflow.org/api_docs/python/tf/contrib/learn/MetricSpec Args: detections: Detection results in a tensor with each row representing [image_id, x, y, width, height, score, class] groundtruth_data: Groundtruth annotations in a tensor with each row representing [y1, x1, y2, x2, is_crowd, area, class]. label_map: optional, a map from class id to name. Returns: metrics_dict: A dictionary mapping from evaluation name to a tuple of operations (`metric_op`, `update_op`). `update_op` appends the detections for the metric to the `self.detections` list. """ with tf.name_scope('coco_metric'): if self.testdev_dir: update_op = tf.numpy_function(self.update_state, [groundtruth_data, detections], []) metrics = tf.numpy_function(self.result, [], tf.float32) metrics_dict = {'AP': (metrics, update_op)} return metrics_dict else: update_op = tf.numpy_function(self.update_state, [groundtruth_data, detections], []) metrics = tf.numpy_function(self.result, [], tf.float32) metrics_dict = {} for i, name in enumerate(self.metric_names): metrics_dict[name] = (metrics[i], update_op) if label_map: label_map = label_util.get_label_map(label_map) for i, cid in enumerate(sorted(label_map.keys())): name = 'AP_/%s' % label_map[cid] metrics_dict[name] = (metrics[i - len(self.metric_names)], update_op) return metrics_dict
def visualize_image(image, boxes, classes, scores, label_map=None, min_score_thresh=0.01, max_boxes_to_draw=1000, line_thickness=2, **kwargs): """Visualizes a given image. Args: image: a image with shape [H, W, C]. boxes: a box prediction with shape [N, 4] ordered [ymin, xmin, ymax, xmax]. classes: a class prediction with shape [N]. scores: A list of float value with shape [N]. label_map: a dictionary from class id to name. min_score_thresh: minimal score for showing. If claass probability is below this threshold, then the object will not show up. max_boxes_to_draw: maximum bounding box to draw. line_thickness: how thick is the bounding box line. **kwargs: extra parameters. Returns: output_image: an output image with annotated boxes and classes. """ label_map = label_util.get_label_map(label_map or 'coco') category_index = {k: {'id': k, 'name': label_map[k]} for k in label_map} img = np.array(image) vis_utils.visualize_boxes_and_labels_on_image_array( img, boxes, classes, scores, category_index, min_score_thresh=min_score_thresh, max_boxes_to_draw=max_boxes_to_draw, line_thickness=line_thickness, **kwargs) return img
def to_json(self, prediction, **kwargs): """predictions to json""" boxes = prediction[:, 1:5] classes = prediction[:, 6].astype(int) scores = prediction[:, 5] label_map = label_util.get_label_map(self.label_map or 'coco') category_index = { k: { 'id': k, 'name': label_map[k] } for k in label_map } min_score_thresh = kwargs.get('min_score_thresh', 0.01) # first check for scores higher than given threshold scores_idx = scores > min_score_thresh scores_abv_thres = scores[scores_idx] boxes_abv_thres = boxes[scores_idx] classes_abv_thres = classes[scores_idx] class_names_abv_thresh = [] for class_abv in classes_abv_thres: if class_abv in six.viewkeys(category_index): class_name = category_index[class_abv]['name'] class_names_abv_thresh.append(class_name) else: class_names_abv_thresh.append('UNKNOWN') json_obj = {} json_obj['boxes'] = boxes_abv_thres.tolist() json_obj['classes_idx'] = classes_abv_thres.tolist() json_obj['classes_name'] = class_names_abv_thresh json_obj['scores'] = scores_abv_thres.tolist() json_str = json.dumps(json_obj, indent=4) return json_str
def main(_): config = hparams_config.get_efficientdet_config(FLAGS.model_name) config.override(FLAGS.hparams) config.val_json_file = FLAGS.val_json_file config.nms_configs.max_nms_inputs = anchors.MAX_DETECTION_POINTS config.drop_remainder = False # eval all examples w/o drop. config.image_size = utils.parse_image_size(config['image_size']) if config.strategy == 'tpu': tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver( FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) tf.config.experimental_connect_to_cluster(tpu_cluster_resolver) tf.tpu.experimental.initialize_tpu_system(tpu_cluster_resolver) ds_strategy = tf.distribute.TPUStrategy(tpu_cluster_resolver) logging.info('All devices: %s', tf.config.list_logical_devices('TPU')) elif config.strategy == 'gpus': ds_strategy = tf.distribute.MirroredStrategy() logging.info('All devices: %s', tf.config.list_physical_devices('GPU')) else: if tf.config.list_physical_devices('GPU'): ds_strategy = tf.distribute.OneDeviceStrategy('device:GPU:0') else: ds_strategy = tf.distribute.OneDeviceStrategy('device:CPU:0') with ds_strategy.scope(): # Network model = efficientdet_keras.EfficientDetNet(config=config) model.build((None, *config.image_size, 3)) util_keras.restore_ckpt(model, tf.train.latest_checkpoint(FLAGS.model_dir), config.moving_average_decay, skip_mismatch=False) @tf.function def model_fn(images, labels): cls_outputs, box_outputs = model(images, training=False) detections = postprocess.generate_detections(config, cls_outputs, box_outputs, labels['image_scales'], labels['source_ids']) tf.numpy_function(evaluator.update_state, [labels['groundtruth_data'], postprocess.transform_detections(detections)], []) # Evaluator for AP calculation. label_map = label_util.get_label_map(config.label_map) evaluator = coco_metric.EvaluationMetric( filename=config.val_json_file, label_map=label_map) # dataset batch_size = FLAGS.batch_size # global batch size. ds = dataloader.InputReader( FLAGS.val_file_pattern, is_training=False, max_instances_per_image=config.max_instances_per_image)( config, batch_size=batch_size) if FLAGS.eval_samples: ds = ds.take((FLAGS.eval_samples + batch_size - 1) // batch_size) ds = ds_strategy.experimental_distribute_dataset(ds) # evaluate all images. eval_samples = FLAGS.eval_samples or 5000 pbar = tf.keras.utils.Progbar((eval_samples + batch_size - 1) // batch_size) for i, (images, labels) in enumerate(ds): ds_strategy.run(model_fn, (images, labels)) pbar.update(i) # compute the final eval results. metrics = evaluator.result() metric_dict = {} for i, name in enumerate(evaluator.metric_names): metric_dict[name] = metrics[i] if label_map: for i, cid in enumerate(sorted(label_map.keys())): name = 'AP_/%s' % label_map[cid] metric_dict[name] = metrics[i + len(evaluator.metric_names)] print(FLAGS.model_name, metric_dict)
def main(_): config = hparams_config.get_efficientdet_config(FLAGS.model_name) config.override(FLAGS.hparams) config.batch_size = FLAGS.batch_size config.val_json_file = FLAGS.val_json_file config.nms_configs.max_nms_inputs = anchors.MAX_DETECTION_POINTS base_height, base_width = utils.parse_image_size(config['image_size']) if FLAGS.strategy == 'tpu': tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver( FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project) tf.config.experimental_connect_to_cluster(tpu_cluster_resolver) tf.tpu.experimental.initialize_tpu_system(tpu_cluster_resolver) ds_strategy = tf.distribute.TPUStrategy(tpu_cluster_resolver) logging.info('All devices: %s', tf.config.list_logical_devices('TPU')) elif FLAGS.strategy == 'gpus': ds_strategy = tf.distribute.MirroredStrategy() logging.info('All devices: %s', tf.config.list_physical_devices('GPU')) else: if tf.config.list_physical_devices('GPU'): ds_strategy = tf.distribute.OneDeviceStrategy('device:GPU:0') else: ds_strategy = tf.distribute.OneDeviceStrategy('device:CPU:0') # in format (height, width, flip) augmentations = [] if FLAGS.enable_tta: for size_offset in (0, 128, 256): for flip in (False, True): augmentations.append((base_height + size_offset, base_width + size_offset, flip)) else: augmentations.append((base_height, base_width, False)) all_detections = [] all_labels = [] with ds_strategy.scope(): # Network model = efficientdet_keras.EfficientDetNet(config=config) model.build((config.batch_size, base_height, base_width, 3)) model.load_weights(tf.train.latest_checkpoint(FLAGS.model_dir)) first_loop = True for height, width, flip in augmentations: config.image_size = (height, width) # dataset ds = dataloader.InputReader( FLAGS.val_file_pattern, is_training=False, use_fake_data=False, max_instances_per_image=config.max_instances_per_image)(config) # create the function once per augmentation, since it closes over the # value of config, which gets updated with the new image size @tf.function def f(images, labels): cls_outputs, box_outputs = model(images, training=False) return postprocess.generate_detections(config, cls_outputs, box_outputs, labels['image_scales'], labels['source_ids'], flip) # inference for images, labels in ds: if flip: images = tf.image.flip_left_right(images) detections = f(images, labels) all_detections.append(detections) if first_loop: all_labels.append(labels) first_loop = False # collect the giant list of detections into a map from image id to # detections detections_per_source = dict() for batch in all_detections: for d in batch: img_id = d[0][0] if img_id.numpy() in detections_per_source: detections_per_source[img_id.numpy()] = tf.concat( [d, detections_per_source[img_id.numpy()]], 0) else: detections_per_source[img_id.numpy()] = d # collect the groundtruth per image id groundtruth_per_source = dict() for batch in all_labels: for img_id, groundtruth in zip(batch['source_ids'], batch['groundtruth_data']): groundtruth_per_source[img_id.numpy()] = groundtruth # calucate the AP scores for all the images evaluator = coco_metric.EvaluationMetric(filename=config.val_json_file) for img_id, d in detections_per_source.items(): if FLAGS.enable_tta: d = wbf.ensemble_detections(config, d, len(augmentations)) evaluator.update_state( tf.stack([groundtruth_per_source[img_id]]).numpy(), postprocess.transform_detections(tf.stack([d])).numpy()) # compute the final eval results. if evaluator: metrics = evaluator.result() metric_dict = {} for i, name in enumerate(evaluator.metric_names): metric_dict[name] = metrics[i] label_map = label_util.get_label_map(config.label_map) if label_map: for i, cid in enumerate(sorted(label_map.keys())): name = 'AP_/%s' % label_map[cid] metric_dict[name] = metrics[i - len(evaluator.metric_names)] print(metric_dict)
def main(_): config = hparams_config.get_efficientdet_config(FLAGS.model_name) config.override(FLAGS.hparams) config.val_json_file = FLAGS.val_json_file config.nms_configs.max_nms_inputs = anchors.MAX_DETECTION_POINTS config.drop_remainder = False # eval all examples w/o drop. config.image_size = utils.parse_image_size(config['image_size']) # Evaluator for AP calculation. label_map = label_util.get_label_map(config.label_map) evaluator = coco_metric.EvaluationMetric(filename=config.val_json_file, label_map=label_map) # dataset batch_size = 1 ds = dataloader.InputReader( FLAGS.val_file_pattern, is_training=False, max_instances_per_image=config.max_instances_per_image)( config, batch_size=batch_size) eval_samples = FLAGS.eval_samples if eval_samples: ds = ds.take((eval_samples + batch_size - 1) // batch_size) # Network lite_runner = LiteRunner(FLAGS.tflite_path, FLAGS.only_network) eval_samples = FLAGS.eval_samples or 5000 pbar = tf.keras.utils.Progbar( (eval_samples + batch_size - 1) // batch_size) for i, (images, labels) in enumerate(ds): if not FLAGS.only_network: nms_boxes_bs, nms_classes_bs, nms_scores_bs, _ = lite_runner.run( images) nms_classes_bs += postprocess.CLASS_OFFSET height, width = utils.parse_image_size(config.image_size) normalize_factor = tf.constant([height, width, height, width], dtype=tf.float32) nms_boxes_bs *= normalize_factor if labels['image_scales'] is not None: scales = tf.expand_dims( tf.expand_dims(labels['image_scales'], -1), -1) nms_boxes_bs = nms_boxes_bs * tf.cast(scales, nms_boxes_bs.dtype) detections = postprocess.generate_detections_from_nms_output( nms_boxes_bs, nms_classes_bs, nms_scores_bs, labels['source_ids']) else: cls_outputs, box_outputs = lite_runner.run(images) detections = postprocess.generate_detections( config, cls_outputs, box_outputs, labels['image_scales'], labels['source_ids'], pre_class_nms=FLAGS.pre_class_nms) detections = postprocess.transform_detections(detections) evaluator.update_state(labels['groundtruth_data'].numpy(), detections.numpy()) pbar.update(i) # compute the final eval results. metrics = evaluator.result() metric_dict = {} for i, name in enumerate(evaluator.metric_names): metric_dict[name] = metrics[i] if label_map: for i, cid in enumerate(sorted(label_map.keys())): name = 'AP_/%s' % label_map[cid] metric_dict[name] = metrics[i + len(evaluator.metric_names)] print(FLAGS.model_name, metric_dict)
def main(_): config = hparams_config.get_efficientdet_config(FLAGS.model_name) config.override(FLAGS.hparams) config.batch_size = FLAGS.batch_size config.val_json_file = FLAGS.val_json_file config.nms_configs.max_nms_inputs = anchors.MAX_DETECTION_POINTS base_height, base_width = utils.parse_image_size(config['image_size']) # Network model = efficientdet_keras.EfficientDetNet(config=config) model.build((config.batch_size, base_height, base_width, 3)) model.load_weights(tf.train.latest_checkpoint(FLAGS.model_dir)) @tf.function def f(imgs, labels, flip): cls_outputs, box_outputs = model(imgs, training=False) return postprocess.generate_detections(config, cls_outputs, box_outputs, labels['image_scales'], labels['source_ids'], flip) # in format (height, width, flip) augmentations = [] if FLAGS.enable_tta: for size_offset in (0, 128, 256): for flip in (False, True): augmentations.append((base_height + size_offset, base_width + size_offset, flip)) else: augmentations.append((base_height, base_width, False)) evaluator = None detections_per_source = dict() for height, width, flip in augmentations: config.image_size = (height, width) # dataset ds = dataloader.InputReader( FLAGS.val_file_pattern, is_training=False, use_fake_data=False, max_instances_per_image=config.max_instances_per_image)(config) # compute stats for all batches. total_steps = FLAGS.eval_samples // FLAGS.batch_size progress = tf.keras.utils.Progbar(total_steps) for i, (images, labels) in enumerate(ds): progress.update(i, values=None) if i > total_steps: break if flip: images = tf.image.flip_left_right(images) detections = f(images, labels, flip) for img_id, d in zip(labels['source_ids'], detections): if img_id.numpy() in detections_per_source: detections_per_source[img_id.numpy()] = tf.concat( [d, detections_per_source[img_id.numpy()]], 0) else: detections_per_source[img_id.numpy()] = d evaluator = coco_metric.EvaluationMetric( filename=config.val_json_file) for d in detections_per_source.values(): if FLAGS.enable_tta: d = wbf.ensemble_detections(config, d, len(augmentations)) evaluator.update_state( labels['groundtruth_data'].numpy(), postprocess.transform_detections(tf.stack([d])).numpy()) # compute the final eval results. if evaluator: metrics = evaluator.result() metric_dict = {} for i, name in enumerate(evaluator.metric_names): metric_dict[name] = metrics[i] label_map = label_util.get_label_map(config.label_map) if label_map: for i, cid in enumerate(sorted(label_map.keys())): name = 'AP_/%s' % label_map[cid] metric_dict[name] = metrics[i - len(evaluator.metric_names)] print(metric_dict)