vocab_size = len(vocab) graph_in = Input((vocab_size, 100)) convs = [ ] for fsz in range (3, 6): x = Conv1D(64, fsz, padding='same', activation="relu")(graph_in) x = MaxPooling1D()(x) x = Flatten()(x) convs.append(x) out = Concatenate(axis=-1)(convs) graph = Model(graph_in, out) # In[27]: embedding_layer.input_length = seq_len # In[28]: model = Sequential([ embedding_layer, SpatialDropout1D(0.2), Dropout (0.2), graph, Dropout (0.5), Dense (100, activation="relu"), Dropout (0.7), Dense (1, activation='sigmoid') ])