def build(self,input_shapes):
     input_shape=input_shapes[0]
     assert len(input_shape)==3
     input_dim=input_shape[2]
     self.input_batch=input_shape[0]
     self.input_num=input_shape[1]
     self.W_c=self.init((input_dim,self.output_dim),name='{}_W_c'.format(self.name))
     self.b_c=K.zeros((self.output_dim,),name='{}_b'.format(self.name))
     
     self.W_m=self.init((input_dim,self.mem_vector_dim),name='{}_W_c'.format(self.name))
     self.b_m=K.zeros((self.mem_vector_dim,),name='{}_b'.format(self.name))
     #可训练参数
     self.trainable_weights=[self.W_c,self.W_m,self.b_c,self.b_m]
Exemple #2
0
    def build(self, input_shapes):
        input_shape = input_shapes[0]
        assert len(input_shape) == 3
        input_dim = input_shape[2]
        self.input_batch = input_shape[0]
        self.input_num = input_shape[1]
        self.W_c = self.init((input_dim, self.output_dim),
                             name='{}_W_c'.format(self.name))
        self.b_c = K.zeros((self.output_dim, ), name='{}_b'.format(self.name))

        self.W_m = self.init((input_dim, self.mem_vector_dim),
                             name='{}_W_c'.format(self.name))
        self.b_m = K.zeros((self.mem_vector_dim, ),
                           name='{}_b'.format(self.name))
        #可训练参数
        self.trainable_weights = [self.W_c, self.W_m, self.b_c, self.b_m]
    def build(self, input_shapes):
        '''
        build方法初始化权重矩阵    
        U_a: x到attention输出的权值矩阵
        U_m: attention_vec到attention输出的取值矩阵
        U_s: attention输出到softmax输出的权重矩阵
        '''
        input_shape = input_shapes[0]
        super(AttentionLSTM, self).build(input_shape)
        self.input_spec = [
            InputSpec(shape=input_shapes[0]),
            InputSpec(shape=input_shapes[1])
        ]
        #attention_dim=self.input_spec[1].shape[1]
        attention_dim = self.att_dim
        input_dim = input_shape[2]
        #attention参数
        self.U_a = self.inner_init((input_dim, self.output_dim),
                                   name='{}_U_a'.format(self.name))
        self.b_a = K.zeros((self.output_dim, ),
                           name='{}_b_a'.format(self.name))

        self.U_m = self.inner_init((attention_dim, self.output_dim),
                                   name='{}_U_m'.format(self.name))
        self.b_m = K.zeros((self.output_dim, ),
                           name='{}_b_m'.format(self.name))

        if self.single_attention_param:
            self.U_s = self.inner_init((self.output_dim, 1),
                                       name='{}_U_s'.format(self.name))
            self.b_s = K.zeros((1, ), name='{}_b_s'.format(self.name))
        else:
            self.U_s = self.inner_init((self.output_dim, self.output_dim),
                                       name='{}_U_s'.format(self.name))
            self.b_s = K.zeros((self.output_dim, ),
                               name='{}_b_s'.format(self.name))

        self.trainable_weights += [
            self.U_a, self.U_m, self.U_s, self.b_a, self.b_m, self.b_s
        ]
        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights
Exemple #4
0
    def build(self, input_shape):
        '''
        build方法初始化权重矩阵        
        U_a: LSTM层输出到attention输出的权值矩阵
        U_m: attention_vec到attention输出的取值矩阵
        U_s: attention输出到softmax输出的权重矩阵
        '''
        super(AttentionLSTM, self).build(input_shape)
        if hasattr(self.attention_vec, '_keras_shape'):
            attention_dim = self.attention_vec._keras_shape[1]
        else:
            raise Exception(
                'Layer could not be build: No information about expected input shape.'
            )
        attention_dim = self.attention_vec._keras_shape[1]
        #attention参数
        self.U_a = self.inner_init((self.output_dim, self.output_dim),
                                   name='{}_U_a'.format(self.name))
        self.b_a = K.zeros((self.output_dim, ),
                           name='{}_b_a'.format(self.name))

        self.U_m = self.inner_init((attention_dim, self.output_dim),
                                   name='{}_U_m'.format(self.name))
        self.b_m = K.zeros((self.output_dim, ),
                           name='{}_b_m'.format(self.name))

        if self.single_attention_param:
            self.U_s = self.inner_init((self.output_dim, 1),
                                       name='{}_U_s'.format(self.name))
            self.b_s = K.zeros((1, ), name='{}_b_s'.format(self.name))
        else:
            self.U_s = self.inner_init((self.output_dim, self.output_dim),
                                       name='{}_U_s'.format(self.name))
            self.b_s = K.zeros((self.output_dim, ),
                               name='{}_b_s'.format(self.name))

        self.trainable_weights += [
            self.U_a, self.U_m, self.U_s, self.b_a, self.b_m, self.b_s
        ]
        if self.initial_weights is not None:
            self.set_weights(self.initial_weights)
            del self.initial_weights
 def build(self,input_shapes):
     '''
     build方法初始化权重矩阵    
     U_a: x到attention输出的权值矩阵
     U_m: attention_vec到attention输出的取值矩阵
     U_s: attention输出到softmax输出的权重矩阵
     '''
     input_shape=input_shapes[0]
     super(AttentionLSTM,self).build(input_shape)
     self.input_spec = [InputSpec(shape=input_shapes[0]),InputSpec(shape=input_shapes[1])]
     #attention_dim=self.input_spec[1].shape[1]
     attention_dim=self.att_dim
     input_dim = input_shape[2]
     #attention参数
     self.U_a=self.inner_init((input_dim,self.output_dim),
                              name='{}_U_a'.format(self.name))
     self.b_a=K.zeros((self.output_dim,),name='{}_b_a'.format(self.name))
     
     self.U_m=self.inner_init((attention_dim,self.output_dim),
                              name='{}_U_m'.format(self.name))
     self.b_m=K.zeros((self.output_dim,),name='{}_b_m'.format(self.name))
     
     if self.single_attention_param:
         self.U_s = self.inner_init((self.output_dim, 1),
                                    name='{}_U_s'.format(self.name))
         self.b_s = K.zeros((1,), name='{}_b_s'.format(self.name))
     else:
         self.U_s = self.inner_init((self.output_dim, self.output_dim),
                                    name='{}_U_s'.format(self.name))
         self.b_s = K.zeros((self.output_dim,), name='{}_b_s'.format(self.name))
     
     self.trainable_weights+=[self.U_a,self.U_m,self.U_s,
                              self.b_a,self.b_m,self.b_s]
     if self.initial_weights is not None:
         self.set_weights(self.initial_weights)
         del self.initial_weights