Exemple #1
0
    def testStaircase(self, serialize):
        initial_lr = 0.1
        k = 10
        decay_rate = 0.96
        step = tf.Variable(0)
        decayed_lr = learning_rate_schedule.InverseTimeDecay(initial_lr,
                                                             k,
                                                             decay_rate,
                                                             staircase=True)
        decayed_lr = _maybe_serialized(decayed_lr, serialize)

        self.evaluate(tf.compat.v1.global_variables_initializer())
        for i in range(k + 1):
            expected = initial_lr / (1 + decay_rate * (i // k))
            self.assertAllClose(self.evaluate(decayed_lr(step)), expected,
                                1e-6)
            self.evaluate(step.assign_add(1))
Exemple #2
0
  def testBasicWithLearningRateInverseTimeDecay(self):
    for dtype in _DATA_TYPES:
      var0_np = np.array([1.0, 2.0], dtype=dtype.as_numpy_dtype)
      var1_np = np.array([3.0, 4.0], dtype=dtype.as_numpy_dtype)
      grads0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
      grads1_np = np.array([0.01, 0.01], dtype=dtype.as_numpy_dtype)
      var0 = tf.Variable(var0_np)
      var1 = tf.Variable(var1_np)
      grads0 = tf.constant(grads0_np)
      grads1 = tf.constant(grads1_np)

      learning_rate = 3.0
      decay = 0.5
      lr_schedule = learning_rate_schedule.InverseTimeDecay(
          learning_rate, decay_steps=1.0, decay_rate=decay)

      ada_opt = adagrad.Adagrad(lr_schedule)

      accum0_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)
      accum1_np = np.array([0.1, 0.1], dtype=dtype.as_numpy_dtype)

      if not tf.executing_eagerly():
        ada_update = ada_opt.apply_gradients(
            zip([grads0, grads1], [var0, var1]))
        self.evaluate(tf.compat.v1.global_variables_initializer())

      # Fetch params to validate initial values
      v0_val, v1_val = self.evaluate([var0, var1])
      self.assertAllClose([1.0, 2.0], v0_val)
      self.assertAllClose([3.0, 4.0], v1_val)

      # Run 3 steps of adagrad
      for t in range(3):
        if not tf.executing_eagerly():
          self.evaluate(ada_update)
        else:
          ada_opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
        lr_np = learning_rate / (1 + decay * t)
        var0_np, accum0_np = adagrad_update_numpy(var0_np, accum0_np, grads0_np,
                                                  lr_np)
        var1_np, accum1_np = adagrad_update_numpy(var1_np, accum1_np, grads1_np,
                                                  lr_np)
        self.assertAllCloseAccordingToType(var0_np, self.evaluate(var0))
        self.assertAllCloseAccordingToType(var1_np, self.evaluate(var1))
Exemple #3
0
  def testAdaptiveLearningRate(self):
    for dtype in _DATA_TYPES:
      with self.test_session():
        var0 = tf.Variable([1.0, 2.0], dtype=dtype)
        var1 = tf.Variable([3.0, 4.0], dtype=dtype)

        def loss():
          return 5 * var0 + 3 * var1  # pylint: disable=cell-var-from-loop

        sgd = gradient_descent.SGD(1.0)

        self.evaluate(tf.compat.v1.global_variables_initializer())
        # Fetch params to validate initial values
        self.assertAllClose([1.0, 2.0], self.evaluate(var0))
        self.assertAllClose([3.0, 4.0], self.evaluate(var1))
        # Run 1 step of sgd through optimizer
        opt_op = sgd.minimize(loss, [var0, var1])
        self.evaluate(tf.compat.v1.global_variables_initializer())
        self.evaluate(opt_op)
        # Validate updated params
        # var0 = [1., 2.] - 1.0 * [5, 5]
        self.assertAllClose([-4., -3.], self.evaluate(var0))
        # var1 = [3., 4.] - 1.0 * [3, 3]
        self.assertAllClose([0., 1.], self.evaluate(var1))

        sgd.learning_rate = 0.5
        if tf.executing_eagerly():
          sgd.minimize(loss, [var0, var1])
        else:
          self.evaluate(opt_op)
        # Validate updated params
        # var0 = [-4., -3.] - 0.5 * [5, 5]
        self.assertAllClose([-6.5, -5.5], self.evaluate(var0))
        # var1 = [0., 1.] - 0.5 * [3, 3]
        self.assertAllClose([-1.5, -0.5], self.evaluate(var1))

        sgd.learning_rate = learning_rate_schedule.InverseTimeDecay(
            0.5, decay_steps=1.0, decay_rate=0.5)
        if tf.executing_eagerly():
          sgd.minimize(loss, [var0, var1])
        else:
          self.evaluate(opt_op)
Exemple #4
0
  def testLearningRateDecayUsedInTwoFunctions(self):
    a = tf.Variable([1., 2.], name='var')
    b = tf.Variable([1.], name='var')

    learning_rate_decay = learning_rate_schedule.InverseTimeDecay(
        0.5, decay_steps=1.0, decay_rate=0.5)
    opt = adam.Adam(learning_rate=learning_rate_decay)
    loss_a = lambda: 3 * a
    loss_b = lambda: 2 * b

    @tf.function
    def fn_a():
      opt.minimize(loss_a, [a])
      return a

    @tf.function
    def fn_b():
      opt.minimize(loss_b, [b])
      return b

    fn_a()
    fn_b()
Exemple #5
0
    def testDenseWithLearningRateInverseTimeDecay(self):
        # TODO(tanzheny, omalleyt): Fix test in eager mode.
        with tf.Graph().as_default():
            var0_np = np.array([1.0, 2.0])
            grads0_np = np.array([0.1, 0.2])
            var1_np = np.array([3.0, 4.0])
            grads1_np = np.array([0.01, 0.2])

            var0 = tf.Variable(var0_np)
            var1 = tf.Variable(var1_np)
            grads0 = tf.constant(grads0_np)
            grads1 = tf.constant(grads1_np)
            learning_rate = 0.01
            rho = 0.9
            momentum = 0.0
            epsilon = 1e-7
            centered = False
            decay = 0.5
            lr_schedule = learning_rate_schedule.InverseTimeDecay(
                learning_rate, decay_steps=1.0, decay_rate=decay)
            opt = rmsprop.RMSprop(learning_rate=lr_schedule,
                                  rho=rho,
                                  momentum=momentum,
                                  epsilon=epsilon,
                                  centered=centered)

            update = opt.apply_gradients(zip([grads0, grads1], [var0, var1]))
            self.evaluate(tf.compat.v1.global_variables_initializer())

            rms0 = opt.get_slot(var0, "rms")
            self.assertIsNotNone(rms0)
            rms1 = opt.get_slot(var1, "rms")
            self.assertIsNotNone(rms1)
            if momentum > 0.:
                mom0 = opt.get_slot(var0, "momentum")
                mom1 = opt.get_slot(var1, "momentum")
            else:
                mom0 = None
                mom1 = None

            mg0_np = np.array([0.0, 0.0])
            mg1_np = np.array([0.0, 0.0])
            rms0_np = np.array([0.0, 0.0])
            rms1_np = np.array([0.0, 0.0])
            mom0_np = np.array([0.0, 0.0])
            mom1_np = np.array([0.0, 0.0])

            # Fetch params to validate initial values
            self.assertAllClose([1.0, 2.0], self.evaluate(var0))
            self.assertAllClose([3.0, 4.0], self.evaluate(var1))

            # Run 4 steps of RMSprop
            for t in range(2):
                self.evaluate(update)

                lr = learning_rate / (1 + decay * t)
                var0_np, mg0_np, rms0_np, mom0_np = self._rmsprop_update_numpy(
                    var0_np, grads0_np, mg0_np, rms0_np, mom0_np, lr, rho,
                    momentum, epsilon, centered)
                var1_np, mg1_np, rms1_np, mom1_np = self._rmsprop_update_numpy(
                    var1_np, grads1_np, mg1_np, rms1_np, mom1_np, lr, rho,
                    momentum, epsilon, centered)

                # Validate updated params
                self.assertAllCloseAccordingToType(rms0_np,
                                                   self.evaluate(rms0))
                self.assertAllCloseAccordingToType(rms1_np,
                                                   self.evaluate(rms1))
                if momentum > 0.:
                    self.assertAllCloseAccordingToType(mom0_np,
                                                       self.evaluate(mom0))
                    self.assertAllCloseAccordingToType(mom1_np,
                                                       self.evaluate(mom1))
                self.assertAllCloseAccordingToType(var0_np,
                                                   self.evaluate(var0))
                self.assertAllCloseAccordingToType(var1_np,
                                                   self.evaluate(var1))
Exemple #6
0
 def testBasicWithLearningRateInverseTimeDecay(self):
     for dtype in [tf.half, tf.float32, tf.float64]:
         learning_rate = learning_rate_schedule.InverseTimeDecay(
             3.0, decay_steps=1.0, decay_rate=0.5)
         sgd = gradient_descent.SGD(learning_rate=learning_rate)
         self._test_basic_sgd_with_learning_rate_decay(sgd, dtype)
Exemple #7
0
def inverse_time_decay(learning_rate,
                       global_step,
                       decay_steps,
                       decay_rate,
                       staircase=False,
                       name=None):
    """Applies inverse time decay to the initial learning rate.

  When training a model, it is often recommended to lower the learning rate as
  the training progresses.  This function applies an inverse decay function
  to a provided initial learning rate.  It requires an `global_step` value to
  compute the decayed learning rate.  You can just pass a TensorFlow variable
  that you increment at each training step.

  The function returns the decayed learning rate.  It is computed as:

  ```python
  decayed_learning_rate = learning_rate / (1 + decay_rate * global_step /
  decay_step)
  ```

  or, if `staircase` is `True`, as:

  ```python
  decayed_learning_rate = learning_rate / (1 + decay_rate * floor(global_step /
  decay_step))
  ```

  Example: decay 1/t with a rate of 0.5:

  ```python
  ...
  global_step = tf.Variable(0, trainable=False)
  learning_rate = 0.1
  decay_steps = 1.0
  decay_rate = 0.5
  learning_rate = tf.compat.v1.train.inverse_time_decay(learning_rate,
  global_step,
  decay_steps, decay_rate)

  # Passing global_step to minimize() will increment it at each step.
  learning_step = (
      tf.compat.v1.train.GradientDescentOptimizer(learning_rate)
      .minimize(...my loss..., global_step=global_step)
  )
  ```

  Args:
    learning_rate: A scalar `float32` or `float64` `Tensor` or a Python number.
      The initial learning rate.
    global_step: A Python number. Global step to use for the decay computation.
      Must not be negative.
    decay_steps: How often to apply decay.
    decay_rate: A Python number.  The decay rate.
    staircase: Whether to apply decay in a discrete staircase, as opposed to
      continuous, fashion.
    name: String.  Optional name of the operation.  Defaults to
      'InverseTimeDecay'.

  Returns:
    A scalar `Tensor` of the same type as `learning_rate`.  The decayed
    learning rate.

  Raises:
    ValueError: if `global_step` is not supplied.

  @compatibility(eager)
  When eager execution is enabled, this function returns a function which in
  turn returns the decayed learning rate Tensor. This can be useful for changing
  the learning rate value across different invocations of optimizer functions.
  @end_compatibility
  """
    decayed_lr = learning_rate_schedule.InverseTimeDecay(learning_rate,
                                                         decay_steps,
                                                         decay_rate,
                                                         staircase=staircase,
                                                         name=name)

    if not tf.executing_eagerly():
        decayed_lr = decayed_lr(global_step)
    else:
        decayed_lr = functools.partial(decayed_lr, global_step)
    return decayed_lr