def _reset(self):

        reg = WeightRegularizer()

        # a hack to make regularization variable
        reg.l1 = K.variable(0.0)
        reg.l2 = K.variable(0.0)

        data, nb_classes = self.data_mix()
        X, Y, Xv, Yv = data

        # input square image dimensions
        img_rows, img_cols = X.shape[-1], X.shape[-1]
        img_channels = X.shape[1]
        # save number of classes and instances
        self.nb_classes = nb_classes
        self.nb_inst = len(X)

        # convert class vectors to binary class matrices
        Y = np_utils.to_categorical(Y, nb_classes)
        Yv = np_utils.to_categorical(Yv, nb_classes)

        # here definition of the model happens
        model = Sequential()

        # double true for icnreased probability of conv layers
        if random.choice([True, True, False]):

            # Choose convolution #1
            self.convAsz = random.choice([32, 64, 128])

            model.add(Convolution2D(self.convAsz, 3, 3, border_mode='same',
                                    input_shape=(img_channels, img_rows, img_cols),
                                    W_regularizer=reg,
                                    b_regularizer=reg))
            model.add(Activation('relu'))

            model.add(Convolution2D(self.convAsz, 3, 3,
                                    W_regularizer=reg,
                                    b_regularizer=reg))
            model.add(Activation('relu'))

            model.add(MaxPooling2D(pool_size=(2, 2)))
            model.add(Dropout(0.25))

            # Choose convolution size B (if needed)
            self.convBsz = random.choice([0, 32, 64])

            if self.convBsz > 0:
                model.add(Convolution2D(self.convBsz, 3, 3, border_mode='same',
                                        W_regularizer=reg,
                                        b_regularizer=reg))
                model.add(Activation('relu'))

                model.add(Convolution2D(self.convBsz, 3, 3,
                                        W_regularizer=reg,
                                        b_regularizer=reg))
                model.add(Activation('relu'))

                model.add(MaxPooling2D(pool_size=(2, 2)))
                model.add(Dropout(0.25))

            model.add(Flatten())

        else:
            model.add(Flatten(input_shape=(img_channels, img_rows, img_cols)))
            self.convAsz = 0
            self.convBsz = 0

        # choose fully connected layer size
        self.densesz = random.choice([256, 512, 762])

        model.add(Dense(self.densesz,
                        W_regularizer=reg,
                        b_regularizer=reg))
        model.add(Activation('relu'))
        model.add(Dropout(0.5))

        model.add(Dense(nb_classes,
                        W_regularizer=reg,
                        b_regularizer=reg))
        model.add(Activation('softmax'))

        # let's train the model using SGD + momentum (how original).
        sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
        model.compile(loss='categorical_crossentropy',
                      optimizer=sgd,
                      metrics=['accuracy'])

        X = X.astype('float32')
        Xv = Xv.astype('float32')
        X /= 255
        Xv /= 255

        self.data = (X, Y, Xv, Yv)
        self.model = model
        self.sgd = sgd

        # initial accuracy values
        self.best_val = 0.0
        self.previous_acc = 0.0

        self.reg = reg
        self.epoch_idx = 0

        return self._get_obs()
Exemple #2
0
    def _reset(self):
        
        reg = WeightRegularizer()
        
        # a hack to make regularization variable
        reg.l1 = K.variable(0.0)
        reg.l2 = K.variable(0.0)
        
        
        data, nb_classes = self.data_mix()
        X, Y, Xv, Yv = data
        
        # input square image dimensions
        img_rows, img_cols = X.shape[-1], X.shape[-1]
        img_channels = X.shape[1]
        # save number of classes and instances
        self.nb_classes = nb_classes
        self.nb_inst = len(X)
        
        # convert class vectors to binary class matrices
        Y = np_utils.to_categorical(Y, nb_classes)
        Yv = np_utils.to_categorical(Yv, nb_classes)
        
        # here definition of the model happens
        model = Sequential()
        
        # double true for icnreased probability of conv layers
        if random.choice([True, True, False]): 
        
            # Choose convolution #1
            self.convAsz = random.choice([32,64,128])
        
            model.add(Convolution2D(self.convAsz, 3, 3, border_mode='same',
                                    input_shape=(img_channels, img_rows, img_cols),
                                    W_regularizer = reg,
                                    b_regularizer = reg))
            model.add(Activation('relu'))
            
            model.add(Convolution2D(self.convAsz, 3, 3,
                                    W_regularizer = reg,
                                    b_regularizer = reg))
            model.add(Activation('relu'))
            
            model.add(MaxPooling2D(pool_size=(2, 2)))
            model.add(Dropout(0.25))
            
            # Choose convolution size B (if needed)
            self.convBsz = random.choice([0,32,64])
            
            if self.convBsz > 0:
                model.add(Convolution2D(self.convBsz, 3, 3, border_mode='same',
                                        W_regularizer = reg,
                                        b_regularizer = reg))
                model.add(Activation('relu'))
                
                model.add(Convolution2D(self.convBsz, 3, 3,
                                        W_regularizer = reg,
                                        b_regularizer = reg))
                model.add(Activation('relu'))
                
                model.add(MaxPooling2D(pool_size=(2, 2)))
                model.add(Dropout(0.25))
            
            model.add(Flatten())
        
        else:
            model.add(Flatten(input_shape=(img_channels, img_rows, img_cols)))
            self.convAsz = 0
            self.convBsz = 0
        
        # choose fully connected layer size
        self.densesz = random.choice([256,512,762])
        
        model.add(Dense(self.densesz,
                                W_regularizer = reg,
                                b_regularizer = reg))
        model.add(Activation('relu'))
        model.add(Dropout(0.5))
        
        model.add(Dense(nb_classes,
                                W_regularizer = reg,
                                b_regularizer = reg))
        model.add(Activation('softmax'))
        
        # let's train the model using SGD + momentum (how original).
        sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
        model.compile(loss='categorical_crossentropy',
                      optimizer=sgd,
                      metrics=['accuracy'])
        
        X = X.astype('float32')
        Xv = Xv.astype('float32')
        X /= 255
        Xv /= 255

        self.data = (X,Y,Xv,Yv)
        self.model = model
        self.sgd = sgd
        
        # initial accuracy values
        self.best_val = 0.0
        self.previous_acc = 0.0
        
        self.reg = reg
        self.epoch_idx = 0
        
        return self._get_obs()
    def train_blueprint(self, lr, decay, momentum, batch_size, l1, l2, convs,
                        fcs):

        X, Y, Xv, Yv = self.data
        nb_classes = self.nb_classes

        reg = WeightRegularizer()

        # a hack to make regularization variable
        reg.l1 = K.variable(0.0)
        reg.l2 = K.variable(0.0)

        # input square image dimensions
        img_rows, img_cols = X.shape[-1], X.shape[-1]
        img_channels = X.shape[1]

        # convert class vectors to binary class matrices
        Y = np_utils.to_categorical(Y, nb_classes)
        Yv = np_utils.to_categorical(Yv, nb_classes)

        # here definition of the model happens
        model = Sequential()

        has_convs = False
        # create all convolutional layers
        for val, use in convs:

            # Size of convolutional layer
            cnvSz = int(val * 127) + 1

            if use < 0.5:
                continue
            has_convs = True
            model.add(
                Convolution2D(cnvSz,
                              3,
                              3,
                              border_mode='same',
                              input_shape=(img_channels, img_rows, img_cols),
                              W_regularizer=reg,
                              b_regularizer=reg))
            model.add(Activation('relu'))

            model.add(MaxPooling2D(pool_size=(2, 2)))
        # model.add(Dropout(0.25))

        if has_convs:
            model.add(Flatten())
        else:
            model.add(Flatten(
                input_shape=(img_channels, img_rows,
                             img_cols)))  # avoid excetpions on no convs

        # create all fully connected layers
        for val, use in fcs:

            if use < 0.5:
                continue

            # choose fully connected layer size
            densesz = int(1023 * val) + 1

            model.add(Dense(densesz, W_regularizer=reg, b_regularizer=reg))
            model.add(Activation('relu'))
        # model.add(Dropout(0.5))

        model.add(Dense(nb_classes, W_regularizer=reg, b_regularizer=reg))
        model.add(Activation('softmax'))

        # let's train the model using SGD + momentum (how original).
        sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
        model.compile(loss='categorical_crossentropy',
                      optimizer=sgd,
                      metrics=['accuracy'])

        X = X.astype('float32')
        Xv = Xv.astype('float32')
        X /= 255
        Xv /= 255

        model = model
        sgd = sgd
        reg = reg

        # set parameters of training step

        sgd.lr.set_value(lr)
        sgd.decay.set_value(decay)
        sgd.momentum.set_value(momentum)

        reg.l1.set_value(l1)
        reg.l2.set_value(l2)

        # train model for one epoch_idx
        H = model.fit(X,
                      Y,
                      batch_size=int(batch_size),
                      nb_epoch=10,
                      shuffle=True)

        diverged = math.isnan(H.history['loss'][-1])
        acc = 0.0

        if not diverged:
            _, acc = model.evaluate(Xv, Yv)

        return diverged, acc
Exemple #4
0
    def train_blueprint(self, lr, decay, momentum, batch_size, l1, l2, convs, fcs):

        X, Y, Xv, Yv = self.data
        nb_classes = self.nb_classes

        reg = WeightRegularizer()

        # a hack to make regularization variable
        reg.l1 = K.variable(0.0)
        reg.l2 = K.variable(0.0)

        # input square image dimensions
        img_rows, img_cols = X.shape[-1], X.shape[-1]
        img_channels = X.shape[1]

        # convert class vectors to binary class matrices
        Y = np_utils.to_categorical(Y, nb_classes)
        Yv = np_utils.to_categorical(Yv, nb_classes)

        # here definition of the model happens
        model = Sequential()

        has_convs = False
        # create all convolutional layers
        for val, use in convs:

            # Size of convolutional layer
            cnvSz = int(val * 127) + 1

            if use < 0.5:
                continue
            has_convs = True
            model.add(Convolution2D(cnvSz, 3, 3, border_mode='same',
                                    input_shape=(img_channels, img_rows, img_cols),
                                    W_regularizer=reg,
                                    b_regularizer=reg))
            model.add(Activation('relu'))

            model.add(MaxPooling2D(pool_size=(2, 2)))
            # model.add(Dropout(0.25))

        if has_convs:
            model.add(Flatten())
        else:
            model.add(Flatten(input_shape=(img_channels, img_rows, img_cols)))  # avoid excetpions on no convs

        # create all fully connected layers
        for val, use in fcs:

            if use < 0.5:
                continue

            # choose fully connected layer size
            densesz = int(1023 * val) + 1

            model.add(Dense(densesz,
                            W_regularizer=reg,
                            b_regularizer=reg))
            model.add(Activation('relu'))
            # model.add(Dropout(0.5))

        model.add(Dense(nb_classes,
                        W_regularizer=reg,
                        b_regularizer=reg))
        model.add(Activation('softmax'))

        # let's train the model using SGD + momentum (how original).
        sgd = SGD(lr=0.01, decay=1e-6, momentum=0.9, nesterov=True)
        model.compile(loss='categorical_crossentropy',
                      optimizer=sgd,
                      metrics=['accuracy'])

        X = X.astype('float32')
        Xv = Xv.astype('float32')
        X /= 255
        Xv /= 255

        model = model
        sgd = sgd
        reg = reg

        # set parameters of training step

        sgd.lr.set_value(lr)
        sgd.decay.set_value(decay)
        sgd.momentum.set_value(momentum)

        reg.l1.set_value(l1)
        reg.l2.set_value(l2)

        # train model for one epoch_idx
        H = model.fit(X, Y,
                      batch_size=int(batch_size),
                      nb_epoch=10,
                      shuffle=True)

        diverged = math.isnan(H.history['loss'][-1])
        acc = 0.0

        if not diverged:
            _, acc = model.evaluate(Xv, Yv)

        return diverged, acc