Exemple #1
0
def main(_):
    config = hparams_config.get_efficientdet_config(FLAGS.model_name)
    config.override(FLAGS.hparams)
    config.batch_size = FLAGS.batch_size
    config.val_json_file = FLAGS.val_json_file

    # dataset
    ds = dataloader.InputReader(
        FLAGS.val_file_pattern,
        is_training=False,
        use_fake_data=False,
        max_instances_per_image=config.max_instances_per_image)(config)

    # Network
    model = efficientdet_keras.EfficientDetNet(config=config)
    model.build((config.batch_size, None, None, 3))
    model.load_weights(tf.train.latest_checkpoint(FLAGS.model_dir))

    evaluator = coco_metric.EvaluationMetric(filename=config.val_json_file)

    # compute stats for all batches.
    for images, labels in ds:
        config.nms_configs.max_nms_inputs = anchors.MAX_DETECTION_POINTS

        cls_outputs, box_outputs = model(images, training=False)
        detections = postprocess.generate_detections(config, cls_outputs,
                                                     box_outputs,
                                                     labels['image_scales'],
                                                     labels['source_ids'],
                                                     False)

        if FLAGS.enable_tta:
            images_flipped = tf.image.flip_left_right(images)
            cls_outputs_flipped, box_outputs_flipped = model(images_flipped,
                                                             training=False)
            detections_flipped = postprocess.generate_detections(
                config, cls_outputs_flipped, box_outputs_flipped,
                labels['image_scales'], labels['source_ids'], True)

            for d, df in zip(detections, detections_flipped):
                combined_detections = wbf.ensemble_detections(
                    config, tf.concat([d, df], 0))
                combined_detections = tf.stack([combined_detections])
                evaluator.update_state(
                    labels['groundtruth_data'].numpy(),
                    postprocess.transform_detections(
                        combined_detections).numpy())
        else:
            evaluator.update_state(
                labels['groundtruth_data'].numpy(),
                postprocess.transform_detections(detections).numpy())

    # compute the final eval results.
    metric_values = evaluator.result()
    metric_dict = {}
    for i, metric_value in enumerate(metric_values):
        metric_dict[evaluator.metric_names[i]] = metric_value
    print(metric_dict)
    def test_ensemble_boxes(self):
        d1 = tf.constant([1, 2, 1, 10, 1, 0.75, 1], dtype=tf.float32)
        d2 = tf.constant([1, 3, 1, 10, 1, 0.75, 1], dtype=tf.float32)
        d3 = tf.constant([1, 3, 1, 10, 1, 1, 2], dtype=tf.float32)

        ensembled = wbf.ensemble_detections({'num_classes': 3},
                                            tf.stack([d1, d2, d3]))

        self.assertAllClose(
            ensembled, [[1, 3, 1, 10, 1, 1, 2], [1, 2.5, 1, 10, 1, 0.75, 1]])
Exemple #3
0
def main(_):
    config = hparams_config.get_efficientdet_config(FLAGS.model_name)
    config.override(FLAGS.hparams)
    config.batch_size = FLAGS.batch_size
    config.val_json_file = FLAGS.val_json_file
    config.nms_configs.max_nms_inputs = anchors.MAX_DETECTION_POINTS
    base_height, base_width = utils.parse_image_size(config['image_size'])

    if FLAGS.strategy == 'tpu':
        tpu_cluster_resolver = tf.distribute.cluster_resolver.TPUClusterResolver(
            FLAGS.tpu, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
        tf.config.experimental_connect_to_cluster(tpu_cluster_resolver)
        tf.tpu.experimental.initialize_tpu_system(tpu_cluster_resolver)
        ds_strategy = tf.distribute.TPUStrategy(tpu_cluster_resolver)
        logging.info('All devices: %s', tf.config.list_logical_devices('TPU'))
    elif FLAGS.strategy == 'gpus':
        ds_strategy = tf.distribute.MirroredStrategy()
        logging.info('All devices: %s', tf.config.list_physical_devices('GPU'))
    else:
        if tf.config.list_physical_devices('GPU'):
            ds_strategy = tf.distribute.OneDeviceStrategy('device:GPU:0')
        else:
            ds_strategy = tf.distribute.OneDeviceStrategy('device:CPU:0')

    # in format (height, width, flip)
    augmentations = []
    if FLAGS.enable_tta:
        for size_offset in (0, 128, 256):
            for flip in (False, True):
                augmentations.append((base_height + size_offset,
                                      base_width + size_offset, flip))
    else:
        augmentations.append((base_height, base_width, False))

    all_detections = []
    all_labels = []
    with ds_strategy.scope():
        # Network
        model = efficientdet_keras.EfficientDetNet(config=config)
        model.build((config.batch_size, base_height, base_width, 3))
        model.load_weights(tf.train.latest_checkpoint(FLAGS.model_dir))

        first_loop = True
        for height, width, flip in augmentations:
            config.image_size = (height, width)
            # dataset
            ds = dataloader.InputReader(
                FLAGS.val_file_pattern,
                is_training=False,
                use_fake_data=False,
                max_instances_per_image=config.max_instances_per_image)(config)

            # create the function once per augmentation, since it closes over the
            # value of config, which gets updated with the new image size
            @tf.function
            def f(images, labels):
                cls_outputs, box_outputs = model(images, training=False)
                return postprocess.generate_detections(config, cls_outputs,
                                                       box_outputs,
                                                       labels['image_scales'],
                                                       labels['source_ids'],
                                                       flip)

            # inference
            for images, labels in ds:
                if flip:
                    images = tf.image.flip_left_right(images)
                detections = f(images, labels)

                all_detections.append(detections)
                if first_loop:
                    all_labels.append(labels)

            first_loop = False

    # collect the giant list of detections into a map from image id to
    # detections
    detections_per_source = dict()
    for batch in all_detections:
        for d in batch:
            img_id = d[0][0]
            if img_id.numpy() in detections_per_source:
                detections_per_source[img_id.numpy()] = tf.concat(
                    [d, detections_per_source[img_id.numpy()]], 0)
            else:
                detections_per_source[img_id.numpy()] = d

    # collect the groundtruth per image id
    groundtruth_per_source = dict()
    for batch in all_labels:
        for img_id, groundtruth in zip(batch['source_ids'],
                                       batch['groundtruth_data']):
            groundtruth_per_source[img_id.numpy()] = groundtruth

    # calucate the AP scores for all the images
    evaluator = coco_metric.EvaluationMetric(filename=config.val_json_file)
    for img_id, d in detections_per_source.items():
        if FLAGS.enable_tta:
            d = wbf.ensemble_detections(config, d, len(augmentations))
        evaluator.update_state(
            tf.stack([groundtruth_per_source[img_id]]).numpy(),
            postprocess.transform_detections(tf.stack([d])).numpy())

    # compute the final eval results.
    if evaluator:
        metrics = evaluator.result()
        metric_dict = {}
        for i, name in enumerate(evaluator.metric_names):
            metric_dict[name] = metrics[i]

        label_map = label_util.get_label_map(config.label_map)
        if label_map:
            for i, cid in enumerate(sorted(label_map.keys())):
                name = 'AP_/%s' % label_map[cid]
                metric_dict[name] = metrics[i - len(evaluator.metric_names)]
        print(metric_dict)
Exemple #4
0
def main(_):
    config = hparams_config.get_efficientdet_config(FLAGS.model_name)
    config.override(FLAGS.hparams)
    config.batch_size = FLAGS.batch_size
    config.val_json_file = FLAGS.val_json_file
    config.nms_configs.max_nms_inputs = anchors.MAX_DETECTION_POINTS
    base_height, base_width = utils.parse_image_size(config['image_size'])

    # Network
    model = efficientdet_keras.EfficientDetNet(config=config)
    model.build((config.batch_size, base_height, base_width, 3))
    model.load_weights(tf.train.latest_checkpoint(FLAGS.model_dir))

    @tf.function
    def f(imgs, labels, flip):
        cls_outputs, box_outputs = model(imgs, training=False)
        return postprocess.generate_detections(config, cls_outputs,
                                               box_outputs,
                                               labels['image_scales'],
                                               labels['source_ids'], flip)

    # in format (height, width, flip)
    augmentations = []
    if FLAGS.enable_tta:
        for size_offset in (0, 128, 256):
            for flip in (False, True):
                augmentations.append((base_height + size_offset,
                                      base_width + size_offset, flip))
    else:
        augmentations.append((base_height, base_width, False))

    evaluator = None
    detections_per_source = dict()
    for height, width, flip in augmentations:
        config.image_size = (height, width)
        # dataset
        ds = dataloader.InputReader(
            FLAGS.val_file_pattern,
            is_training=False,
            use_fake_data=False,
            max_instances_per_image=config.max_instances_per_image)(config)

        # compute stats for all batches.
        total_steps = FLAGS.eval_samples // FLAGS.batch_size
        progress = tf.keras.utils.Progbar(total_steps)
        for i, (images, labels) in enumerate(ds):
            progress.update(i, values=None)
            if i > total_steps:
                break

            if flip:
                images = tf.image.flip_left_right(images)
            detections = f(images, labels, flip)

            for img_id, d in zip(labels['source_ids'], detections):
                if img_id.numpy() in detections_per_source:
                    detections_per_source[img_id.numpy()] = tf.concat(
                        [d, detections_per_source[img_id.numpy()]], 0)
                else:
                    detections_per_source[img_id.numpy()] = d

            evaluator = coco_metric.EvaluationMetric(
                filename=config.val_json_file)
            for d in detections_per_source.values():
                if FLAGS.enable_tta:
                    d = wbf.ensemble_detections(config, d, len(augmentations))
                evaluator.update_state(
                    labels['groundtruth_data'].numpy(),
                    postprocess.transform_detections(tf.stack([d])).numpy())

    # compute the final eval results.
    if evaluator:
        metrics = evaluator.result()
        metric_dict = {}
        for i, name in enumerate(evaluator.metric_names):
            metric_dict[name] = metrics[i]

        label_map = label_util.get_label_map(config.label_map)
        if label_map:
            for i, cid in enumerate(sorted(label_map.keys())):
                name = 'AP_/%s' % label_map[cid]
                metric_dict[name] = metrics[i - len(evaluator.metric_names)]
        print(metric_dict)
Exemple #5
0
def main(_):
  config = hparams_config.get_efficientdet_config(FLAGS.model_name)
  config.override(FLAGS.hparams)
  config.batch_size = FLAGS.batch_size
  config.val_json_file = FLAGS.val_json_file
  config.nms_configs.max_nms_inputs = anchors.MAX_DETECTION_POINTS
  base_height, base_width = utils.parse_image_size(config['image_size'])

  # Network
  model = efficientdet_keras.EfficientDetNet(config=config)
  model.build((config.batch_size, base_height, base_width, 3))
  model.load_weights(tf.train.latest_checkpoint(FLAGS.model_dir))

  # in format (height, width, flip)
  augmentations = [] 
  if FLAGS.enable_tta:
    for size_offset in (0, 128, 256):
      for flip in (False, True):
        augmentations.append((base_height + size_offset, base_width + size_offset, flip))
  else:
    augmentations.append((base_height, base_width, False))

  detections_per_source = dict()
  for height, width, flip in augmentations:
    config.image_size = (height, width)
    # dataset
    ds = dataloader.InputReader(
        FLAGS.val_file_pattern,
        is_training=False,
        use_fake_data=False,
        max_instances_per_image=config.max_instances_per_image)(
            config)

    # compute stats for all batches.
    for images, labels in ds:
      if flip:
        images = tf.image.flip_left_right(images)
      cls_outputs, box_outputs = model(images, training=False)
      detections = postprocess.generate_detections(config, cls_outputs,
                                                  box_outputs,
                                                  labels['image_scales'],
                                                  labels['source_ids'], flip)

      for id, d in zip(labels['source_ids'], detections):
        if id.numpy() in detections_per_source:
          detections_per_source[id.numpy()] = tf.concat([d, detections_per_source[id.numpy()]], 0)
        else:
          detections_per_source[id.numpy()] = d


  evaluator = coco_metric.EvaluationMetric(filename=config.val_json_file)
  for d in detections_per_source.values():
    if FLAGS.enable_tta:
      d = wbf.ensemble_detections(config, d, len(augmentations))
    evaluator.update_state(
        labels['groundtruth_data'].numpy(),
        postprocess.transform_detections(tf.stack([d])).numpy())

  # compute the final eval results.
  metric_values = evaluator.result()
  metric_dict = {}
  for i, metric_value in enumerate(metric_values):
    metric_dict[evaluator.metric_names[i]] = metric_value
  print(metric_dict)