Exemple #1
0
def convert_InstanceNormalizationLayer(scope, operator, container):
    from keras2onnx.common.onnx_ops import OnnxOperatorBuilder
    op = operator.raw_operator
    params = op.get_weights()
    assert len(op.input_shape) == 4
    beta = params[0].reshape(1, 1, 1, 1).astype('float32')
    gamma = params[1].reshape(1, 1, 1, 1).astype('float32')
    oopb = OnnxOperatorBuilder(container, scope)

    reducemean_1 = oopb.add_node('ReduceMean',
                                 [operator.inputs[0].full_name],
                                 operator.inputs[0].full_name + '_reduce_mean_1',
                                 axes=[1, 2, 3], keepdims=1)

    sub_1 = oopb.add_node('Sub',
                          [operator.inputs[0].full_name, reducemean_1],
                          operator.inputs[0].full_name + '_sub_1')

    mul = oopb.add_node('Mul',
                        [sub_1, sub_1],
                        operator.inputs[0].full_name + '_mul')

    reducemean_2 = oopb.add_node('ReduceMean',
                                 [mul],
                                 operator.inputs[0].full_name + '_reduce_mean_2',
                                 axes=[1, 2, 3], keepdims=1)

    sqrt = oopb.add_node('Sqrt',
                         [reducemean_2],
                         operator.inputs[0].full_name + '_sqrt')

    add = oopb.add_node('Add',
                        [sqrt,
                         ('_start', oopb.float, np.array([op.epsilon], dtype='float32'))],
                        operator.inputs[0].full_name + '_add')

    div = oopb.add_node('Div',
                        [sub_1, add],
                        operator.inputs[0].full_name + '_div')

    mul_scale = oopb.add_node('Mul',
                              [div,
                               ('_start', oopb.float, beta)],
                              operator.inputs[0].full_name + '_mul_scale')

    add_bias = oopb.add_node('Add',
                             [mul_scale,
                              ('_start', oopb.float, gamma)],
                             operator.inputs[0].full_name + '_add_bias')

    apply_identity(scope, add_bias, operator.outputs[0].full_name, container)
Exemple #2
0
def convert_tf_crop_and_resize(scope, operator, container):
    if operator.target_opset < 11:
        raise ValueError("CropAndResize op is not supported for opset < 11")
    oopb = OnnxOperatorBuilder(container, scope)
    node = operator.raw_operator
    mode_value = node.get_attr('method')
    transpose_node = oopb.apply_transpose(operator.inputs[0].full_name,
                                          name=operator.full_name + '_transpose_1',
                                          perm=[0, 3, 1, 2])
    cropandresize = oopb.add_node('CropAndResize',
                                  transpose_node + operator.input_full_names[1:],
                                  operator.full_name + '_crop_and_resize',
                                  op_domain='com.microsoft',
                                  op_version=1,
                                  mode=mode_value)
    oopb.apply_op_with_output("apply_transpose",
                              cropandresize,
                              operator.output_full_names,
                              name=operator.full_name + '_transpose_final',
                              perm=[0, 2, 3, 1])
Exemple #3
0
def convert_DetectionLayer(scope, operator, container):
    # type: (keras2onnx.common.InterimContext, keras2onnx.common.Operator, keras2onnx.common.OnnxObjectContainer) -> None
    DETECTION_MAX_INSTANCES = 100
    DETECTION_NMS_THRESHOLD = 0.3
    DETECTION_MIN_CONFIDENCE = 0.7

    oopb = OnnxOperatorBuilder(container, scope)
    box_transpose = scope.get_unique_variable_name(operator.inputs[0].full_name + '_tx')
    score_transpose = scope.get_unique_variable_name(operator.inputs[1].full_name + '_tx')

    # apply_transpose(scope, operator.inputs[0].full_name, box_transpose, container, perm=[2, 0, 1])
    apply_identity(scope, operator.inputs[0].full_name, box_transpose, container)
    # output shape: [num_batches, spatial_dimension, 4]
    score_identity = scope.get_unique_variable_name(operator.inputs[1].full_name + '_id')
    apply_identity(scope, operator.inputs[1].full_name, score_identity, container)
    # output shape: [num_batches, spatial_dimension, num_classes]

    deltas_transpose = scope.get_unique_variable_name(operator.inputs[2].full_name + '_tx')
    apply_identity(scope, operator.inputs[2].full_name, deltas_transpose, container)
    image_meta = scope.get_unique_variable_name(operator.inputs[3].full_name + '_tx')
    apply_identity(scope, operator.inputs[3].full_name, image_meta, container)
    windows_transpose = norm_boxes_graph(scope, operator, container, oopb, image_meta)
    delta_mul_output = convert_apply_box_deltas_graph(scope, operator, container, oopb, box_transpose, score_identity, deltas_transpose, windows_transpose)

    sliced_score = oopb.add_node('Slice',
                                 [score_identity,
                                  ('_start', oopb.int64, np.array([1], dtype='int64')),
                                  ('_end', oopb.int64, np.array([81], dtype='int64')),
                                  ('_axes', oopb.int64, np.array([2], dtype='int64'))
                                  ],
                                 operator.inputs[1].full_name + '_sliced')
    apply_transpose(scope, sliced_score, score_transpose, container, perm=[0, 2, 1])
    # output shape: [num_batches, num_classes, spatial_dimension]

    max_output_size = scope.get_unique_variable_name('max_output_size')
    iou_threshold = scope.get_unique_variable_name('iou_threshold')
    score_threshold = scope.get_unique_variable_name('layer.score_threshold')

    container.add_initializer(max_output_size, onnx_proto.TensorProto.INT64,
                              [], [DETECTION_MAX_INSTANCES])
    container.add_initializer(iou_threshold, onnx_proto.TensorProto.FLOAT,
                              [], [DETECTION_NMS_THRESHOLD])
    container.add_initializer(score_threshold, onnx_proto.TensorProto.FLOAT,
                              [], [DETECTION_MIN_CONFIDENCE])

    nms_node = next((nd_ for nd_ in operator.nodelist if nd_.type == 'NonMaxSuppressionV3'), operator.nodelist[0])
    nms_output = scope.get_unique_variable_name(operator.output_full_names[0] + '_nms')
    container.add_node("NonMaxSuppression",
                       [delta_mul_output, score_transpose, max_output_size, iou_threshold, score_threshold],
                       nms_output,
                       op_version=operator.target_opset,
                       name=nms_node.name)

    add_init = scope.get_unique_variable_name('add')
    container.add_initializer(add_init, onnx_proto.TensorProto.INT64,
                              [1, 3], [0, 1, 0])
    nms_output_add = scope.get_unique_variable_name(operator.output_full_names[0] + '_class_add')
    container.add_node("Add",
                       [nms_output, add_init],
                       nms_output_add,
                       op_version=operator.target_opset,
                       name=nms_node.name + '_class_idx_add')

    starts_init = scope.get_unique_variable_name('starts')
    ends_init = scope.get_unique_variable_name('ends')
    axes_init = scope.get_unique_variable_name('axes')

    container.add_initializer(starts_init, onnx_proto.TensorProto.INT32,
                              [1], [1])
    container.add_initializer(ends_init, onnx_proto.TensorProto.INT32,
                              [1], [2])
    container.add_initializer(axes_init, onnx_proto.TensorProto.INT32,
                              [1], [1])

    class_idx_output = scope.get_unique_variable_name(operator.output_full_names[0] + '_class_idx')
    container.add_node("Slice",
                       [nms_output_add, starts_init, ends_init, axes_init],
                       class_idx_output,
                       op_version=operator.target_opset,
                       name=nms_node.name+'_class_idx')
    # output shape: [num_selected_indices, 1]

    starts_init_2 = scope.get_unique_variable_name('starts')
    ends_init_2 = scope.get_unique_variable_name('ends')
    axes_init_2 = scope.get_unique_variable_name('axes')

    container.add_initializer(starts_init_2, onnx_proto.TensorProto.INT32,
                              [1], [2])
    container.add_initializer(ends_init_2, onnx_proto.TensorProto.INT32,
                              [1], [3])
    container.add_initializer(axes_init_2, onnx_proto.TensorProto.INT32,
                              [1], [1])

    box_idx_output = scope.get_unique_variable_name(operator.output_full_names[0] + '_box_idx')
    container.add_node("Slice",
                       [nms_output_add, starts_init_2, ends_init_2, axes_init_2],
                       box_idx_output,
                       op_version=operator.target_opset,
                       name=nms_node.name + '_box_idx')
    # output shape: [num_selected_indices, 1]

    box_idx_squeeze = scope.get_unique_variable_name(operator.output_full_names[0] + '_box_idx_squeeze')
    attrs = {'axes': [1]}
    container.add_node("Squeeze",
                       box_idx_output,
                       box_idx_squeeze,
                       op_version=operator.target_opset,
                       name=nms_node.name + '_box_idx_squeeze', **attrs)
    # output shape: [num_selected_indices]

    starts_init_3 = scope.get_unique_variable_name('starts')
    ends_init_3 = scope.get_unique_variable_name('ends')
    axes_init_3 = scope.get_unique_variable_name('axes')
    step_init_3 = scope.get_unique_variable_name('steps')

    container.add_initializer(starts_init_3, onnx_proto.TensorProto.INT32,
                              [1], [2])
    container.add_initializer(ends_init_3, onnx_proto.TensorProto.INT32,
                              [1], [0])
    container.add_initializer(axes_init_3, onnx_proto.TensorProto.INT32,
                              [1], [1])
    container.add_initializer(step_init_3, onnx_proto.TensorProto.INT32,
                              [1], [-1])
    from keras2onnx.common.data_types import Int32TensorType, FloatTensorType
    class_box_idx_output = scope.get_local_variable_or_declare_one(operator.output_full_names[0] + '_class_box_idx',
                                                            type=Int32TensorType(shape=[None, 2]))
    container.add_node("Slice",
                       [nms_output_add, starts_init_3, ends_init_3, axes_init_3, step_init_3],
                       class_box_idx_output.full_name,
                       op_version=operator.target_opset,
                       name=nms_node.name + '_class_box_idx')
    # output shape: [num_selected_indices, 2]

    box_squeeze = scope.get_unique_variable_name(operator.output_full_names[0] + '_box_squeeze')
    attrs = {'axes': [0]}
    container.add_node("Squeeze",
                       delta_mul_output,
                       box_squeeze,
                       op_version=operator.target_opset,
                       name=nms_node.name + '_box_squeeze', **attrs)
    # output shape: [spatial_dimension, 4]

    score_squeeze = scope.get_local_variable_or_declare_one(operator.output_full_names[0] + '_score_squeeze',
                                                             type=FloatTensorType(shape=[None]))
    attrs = {'axes': [0]}
    container.add_node("Squeeze",
                       score_identity,
                       score_squeeze.full_name,
                       op_version=operator.target_opset,
                       name=nms_node.name + '_score_squeeze', **attrs)
    # output shape: [spatial_dimension, num_classes]

    box_gather = scope.get_unique_variable_name(operator.output_full_names[0] + '_box_gather')
    attrs = {'axis': 0}
    container.add_node("Gather",
                       [box_squeeze, box_idx_squeeze],
                       box_gather,
                       op_version=operator.target_opset,
                       name=nms_node.name + '_box_gather', **attrs)
    # output shape: [num_selected_indices, 4]

    score_gather = scope.get_unique_variable_name(operator.output_full_names[0] + '_score_gather')
    container.add_node("GatherND",
                       [score_squeeze.full_name, class_box_idx_output.full_name],
                       score_gather,
                       op_version=operator.target_opset, op_domain='com.microsoft',
                       name=nms_node.name + '_score_gather')
    # output shape: [num_selected_indices]

    score_gather_unsqueeze = scope.get_unique_variable_name(operator.output_full_names[0] + '_score_gather_unsqueeze')
    attrs = {'axes': [1]}
    container.add_node("Unsqueeze",
                       score_gather,
                       score_gather_unsqueeze,
                       op_version=operator.target_opset,
                       name=nms_node.name + '_score_gather_unsqueeze', **attrs)
    # output shape: [num_selected_indices, 1]


    top_k_var = scope.get_unique_variable_name('topK')
    container.add_initializer(top_k_var, onnx_proto.TensorProto.FLOAT,
                              [1], [100.0])

    score_gather_shape = oopb.add_node('Shape',
                                       [score_gather],
                                       operator.inputs[1].full_name + '_score_gather_shape')
    attrs = {'to': 1}
    scope_gather_float = oopb.add_node('Cast',
                                       [score_gather_shape],
                                       operator.inputs[1].full_name + '_scope_gather_float', **attrs)
    top_k_min = oopb.add_node('Min',
                              [scope_gather_float, top_k_var],
                              operator.inputs[1].full_name + '_top_k_min')
    attrs = {'to': 7}
    top_k_min_int = oopb.add_node('Cast',
                                   [top_k_min],
                                   operator.inputs[1].full_name + '_top_k_min_int', **attrs)


    score_top_k_output_val = scope.get_unique_variable_name(operator.output_full_names[0] + '_score_top_k_output_val')
    # output shape: [num_top_K]
    score_top_k_output_idx = scope.get_unique_variable_name(operator.output_full_names[0] + '_score_top_k_output_idx')
    # output shape: [num_top_K]
    attrs = {'axis': 0}
    container.add_node('TopK', [score_gather, top_k_min_int], [score_top_k_output_val, score_top_k_output_idx],
                       op_version=operator.target_opset,
                       name=nms_node.name + '_topK', **attrs)

    class_idx_cast = scope.get_unique_variable_name(operator.output_full_names[0] + '_class_idx_cast')
    attrs = {'to': 1}
    container.add_node('Cast', class_idx_output, class_idx_cast, op_version=operator.target_opset,
                       name=nms_node.name+'_class_idx_cast', **attrs)
    # output shape: [num_selected_indices, 1]

    concat_var = scope.get_unique_variable_name(operator.output_full_names[0] + '_concat_var')
    concat_node = next((nd_ for nd_ in operator.nodelist if nd_.type == 'Concat'), operator.nodelist[0])
    attrs = {'axis': 1}
    container.add_node("Concat",
                       [box_gather, class_idx_cast, score_gather_unsqueeze],
                       concat_var,
                       op_version=operator.target_opset,
                       name=concat_node.name, **attrs)
    # output shape: [num_selected_indices, 6]

    all_gather = scope.get_unique_variable_name(operator.output_full_names[0] + '_all_gather')
    attrs = {'axis': 0}
    container.add_node("Gather",
                       [concat_var, score_top_k_output_idx],
                       all_gather,
                       op_version=operator.target_opset,
                       name=nms_node.name + '_all_gather', **attrs)
    # output shape: [num_top_K, 6]
    padded_result = oopb.add_node('Pad',
                                  [all_gather,
                                   np.array([0, 0, DETECTION_MAX_INSTANCES, 0],
                                            dtype=np.int64)],
                                  nms_node.name + '_padded_result',
                                  op_domain='com.microsoft')
    detection_final = oopb.add_node('Slice',
                                 [padded_result,
                                  ('_start', oopb.int64, np.array([0], dtype='int64')),
                                  ('_end', oopb.int64, np.array([DETECTION_MAX_INSTANCES], dtype='int64')),
                                  ('_axes', oopb.int64, np.array([0], dtype='int64'))
                                  ],
                                 nms_node.name + '_detection_final'
                                 )

    attrs = {'axes': [0]}
    container.add_node("Unsqueeze",
                       detection_final,
                       operator.output_full_names[0],
                       op_version=operator.target_opset,
                       name=nms_node.name + '_concat_unsqueeze', **attrs)
Exemple #4
0
def convert_keras_pooling_core(scope, operator, container, n_dims, op_type,
                               input_perm_axes, output_perm_axes):
    op = operator.raw_operator
    no_permutation_required = op.data_format == 'channels_first' if hasattr(
        op, 'data_format') else False

    if no_permutation_required:
        adjusted_pooling_input = operator.inputs[0].full_name
    else:
        adjusted_pooling_input = scope.get_unique_variable_name(
            'input_transposed')
        preprocessor_type = 'Transpose'
        preprocessor_attrs = {
            'name': scope.get_unique_operator_name(preprocessor_type),
            'perm': input_perm_axes
        }
        container.add_node(preprocessor_type, operator.inputs[0].full_name,
                           adjusted_pooling_input, **preprocessor_attrs)

    is_global = type(op).__name__.startswith('Global')
    op_type_prefix = 'Global' if is_global else ''
    onnx_op_type = "AveragePool" if op_type == 'Avg' else 'MaxPool'
    attrs = {}
    op_version = 10 if container.target_opset >= 10 else 7
    if not is_global:
        attrs['strides'] = list(op.strides)
        attrs['kernel_shape'] = op.pool_size
        attrs['op_version'] = op_version
        # In ONNX opset 10, the ceil_mode attribute was added to local MaxPool and AveragePool
        if container.target_opset >= 10:
            attrs['ceil_mode'] = 0
        if op.padding == 'valid':
            attrs['auto_pad'] = 'VALID'
        elif op.padding == 'same':
            attrs['auto_pad'] = 'SAME_UPPER'
        else:
            raise RuntimeError("Unsupported padding type '{0}'".format(
                op.padding))

    from keras2onnx.common.onnx_ops import OnnxOperatorBuilder
    oopb = OnnxOperatorBuilder(container, scope)
    if no_permutation_required:
        # In this case, the output of our Pool operator just match what Keras produces.
        pool_result = oopb.add_node(op_type_prefix + onnx_op_type,
                                    adjusted_pooling_input,
                                    operator.inputs[0].full_name + '_pooling',
                                    **attrs)
    else:
        # Put the output of Pool operator to an intermediate tensor. Laster we will apply a Transpose to match the
        # original Keras output format
        pool_result_1 = oopb.add_node(
            op_type_prefix + onnx_op_type, adjusted_pooling_input,
            operator.inputs[0].full_name + '_pooling', **attrs)

        # Generate a final Transpose
        pool_result = oopb.add_node('Transpose',
                                    pool_result_1,
                                    operator.inputs[0].full_name +
                                    '_transpose',
                                    perm=output_perm_axes)

    if is_global:
        import numpy as np
        squeeze_result = oopb.add_node(
            'Reshape', [
                pool_result,
                ('_start', oopb.int64, np.array([0, -1], dtype='int64'))
            ], operator.inputs[0].full_name + '_reshape')
    else:
        squeeze_result = pool_result

    container.add_node('Identity', squeeze_result,
                       operator.outputs[0].full_name)
Exemple #5
0
def convert_apply_box_deltas_graph(scope, operator, container, oopb,
                                   box_transpose, score_identity,
                                   deltas_transpose, windows_transpose):
    oopb = OnnxOperatorBuilder(container, scope)
    box_squeeze = oopb.apply_squeeze(box_transpose,
                                     name=operator.full_name + '_box_squeeze',
                                     axes=[0])[0]
    # output shape: [spatial_dimension, 4]

    deltas_squeeze = oopb.apply_squeeze(deltas_transpose,
                                        name=operator.full_name +
                                        '_deltas_squeeze',
                                        axes=[0])[0]
    # output shape: [spatial_dimension, num_classes, 4]

    score_squeeze = oopb.apply_squeeze(score_identity,
                                       name=operator.full_name +
                                       '_score_squeeze',
                                       axes=[0])[0]
    # output shape: [spatial_dimension, num_classes]

    class_ids = scope.get_unique_variable_name('class_ids')
    attrs = {'axis': 1}
    container.add_node('ArgMax',
                       score_squeeze,
                       class_ids,
                       op_version=operator.target_opset,
                       **attrs)
    # output shape: [spatial_dimension, 1]

    prob_shape = oopb.add_node('Shape', [score_squeeze],
                               operator.inputs[1].full_name + '_prob_shape')
    prob_shape_0 = oopb.add_node(
        'Slice', [
            prob_shape, ('_start', oopb.int64, np.array([0], dtype='int64')),
            ('_end', oopb.int64, np.array([1], dtype='int64')),
            ('_axes', oopb.int64, np.array([0], dtype='int64'))
        ], operator.inputs[1].full_name + '_prob_shape_0')
    prob_range = oopb.add_node(
        'Range',
        [
            ('_start', oopb.int64, np.array([0], dtype='int64')),
            prob_shape_0,
            # ('_limit', oopb.int64, np.array([1000], dtype='int64')),
            ('_delta', oopb.int64, np.array([1], dtype='int64'))
        ],
        operator.inputs[1].full_name + '_prob_range',
        op_domain='com.microsoft',
        op_version=1)

    prob_range_unsqueeze = oopb.apply_unsqueeze([prob_range],
                                                operator.inputs[1].full_name +
                                                '_prob_range_unsqueeze',
                                                axes=[1])[0]
    # output shape: [spatial_dimension, 1]

    attrs = {'axis': 1}
    indices = oopb.add_node('Concat', [prob_range_unsqueeze, class_ids],
                            operator.inputs[1].full_name + '_indices', **attrs)
    # output shape: [spatial_dimension, 2]

    deltas_specific = oopb.add_node(
        'GatherND', [deltas_squeeze, indices],
        operator.inputs[2].full_name + '_deltas_specific')
    # output shape: [spatial_dimension, 4]

    BBOX_STD_DEV = np.array([0.1, 0.1, 0.2, 0.2], dtype='float32')
    delta_mul_output = oopb.add_node(
        'Mul', [deltas_specific, ('_mul_constant', oopb.float, BBOX_STD_DEV)],
        operator.inputs[2].full_name + '_mul')
    # output shape: [spatial_dimension, 4]

    box_0 = oopb.add_node('Slice', [
        box_squeeze, ('_start', oopb.int64, np.array([0], dtype='int64')),
        ('_end', oopb.int64, np.array([1], dtype='int64')),
        ('_axes', oopb.int64, np.array([1], dtype='int64'))
    ], operator.inputs[0].full_name + '_sliced_0')
    box_1 = oopb.add_node('Slice', [
        box_squeeze, ('_start', oopb.int64, np.array([1], dtype='int64')),
        ('_end', oopb.int64, np.array([2], dtype='int64')),
        ('_axes', oopb.int64, np.array([1], dtype='int64'))
    ], operator.inputs[0].full_name + '_sliced_1')
    box_2 = oopb.add_node('Slice', [
        box_squeeze, ('_start', oopb.int64, np.array([2], dtype='int64')),
        ('_end', oopb.int64, np.array([3], dtype='int64')),
        ('_axes', oopb.int64, np.array([1], dtype='int64'))
    ], operator.inputs[0].full_name + '_sliced_2')
    box_3 = oopb.add_node('Slice', [
        box_squeeze, ('_start', oopb.int64, np.array([3], dtype='int64')),
        ('_end', oopb.int64, np.array([4], dtype='int64')),
        ('_axes', oopb.int64, np.array([1], dtype='int64'))
    ], operator.inputs[0].full_name + '_sliced_3')

    delta_0 = oopb.add_node('Slice', [
        delta_mul_output, ('_start', oopb.int64, np.array([0], dtype='int64')),
        ('_end', oopb.int64, np.array([1], dtype='int64')),
        ('_axes', oopb.int64, np.array([1], dtype='int64'))
    ], operator.inputs[3].full_name + '_sliced_0')
    delta_1 = oopb.add_node('Slice', [
        delta_mul_output, ('_start', oopb.int64, np.array([1], dtype='int64')),
        ('_end', oopb.int64, np.array([2], dtype='int64')),
        ('_axes', oopb.int64, np.array([1], dtype='int64'))
    ], operator.inputs[3].full_name + '_sliced_1')
    delta_2 = oopb.add_node('Slice', [
        delta_mul_output, ('_start', oopb.int64, np.array([2], dtype='int64')),
        ('_end', oopb.int64, np.array([3], dtype='int64')),
        ('_axes', oopb.int64, np.array([1], dtype='int64'))
    ], operator.inputs[3].full_name + '_sliced_2')
    delta_3 = oopb.add_node('Slice', [
        delta_mul_output, ('_start', oopb.int64, np.array([3], dtype='int64')),
        ('_end', oopb.int64, np.array([4], dtype='int64')),
        ('_axes', oopb.int64, np.array([1], dtype='int64'))
    ], operator.inputs[3].full_name + '_sliced_3')

    height = oopb.add_node('Sub', [box_2, box_0],
                           operator.inputs[0].full_name + '_height')
    width = oopb.add_node('Sub', [box_3, box_1],
                          operator.inputs[0].full_name + '_width')

    half_height_0 = oopb.add_node(
        'Mul', [
            height,
            ('_mul_constant', oopb.float, np.array([0.5], dtype='float32'))
        ], operator.inputs[0].full_name + '_half_height_0')
    half_width_0 = oopb.add_node(
        'Mul', [
            width,
            ('_mul_constant', oopb.float, np.array([0.5], dtype='float32'))
        ], operator.inputs[0].full_name + '_half_width_0')
    center_y_0 = oopb.add_node('Add', [box_0, half_height_0],
                               operator.inputs[0].full_name + '_center_y_0')
    center_x_0 = oopb.add_node('Add', [box_1, half_width_0],
                               operator.inputs[0].full_name + '_center_x_0')

    delta_height = oopb.add_node(
        'Mul', [delta_0, height],
        operator.inputs[0].full_name + '_delta_height')
    delta_width = oopb.add_node('Mul', [delta_1, width],
                                operator.inputs[0].full_name + '_delta_width')
    center_y_1 = oopb.add_node('Add', [center_y_0, delta_height],
                               operator.inputs[0].full_name + '_center_y_1')
    center_x_1 = oopb.add_node('Add', [center_x_0, delta_width],
                               operator.inputs[0].full_name + '_center_x_1')

    delta_2_exp = oopb.add_node('Exp', [delta_2],
                                operator.inputs[0].full_name + '_delta_2_exp')
    delta_3_exp = oopb.add_node('Exp', [delta_3],
                                operator.inputs[0].full_name + '_delta_3_exp')
    height_exp = oopb.add_node('Mul', [height, delta_2_exp],
                               operator.inputs[0].full_name + '_height_exp')
    width_exp = oopb.add_node('Mul', [width, delta_3_exp],
                              operator.inputs[0].full_name + '_width_exp')

    half_height_1 = oopb.add_node(
        'Mul', [
            height_exp,
            ('_mul_constant', oopb.float, np.array([0.5], dtype='float32'))
        ], operator.inputs[0].full_name + '_half_height_1')
    half_width_1 = oopb.add_node(
        'Mul', [
            width_exp,
            ('_mul_constant', oopb.float, np.array([0.5], dtype='float32'))
        ], operator.inputs[0].full_name + '_half_width_1')
    y1 = oopb.add_node('Sub', [center_y_1, half_height_1],
                       operator.inputs[0].full_name + '_y1')
    x1 = oopb.add_node('Sub', [center_x_1, half_width_1],
                       operator.inputs[0].full_name + '_x1')
    y2 = oopb.add_node('Add', [y1, height_exp],
                       operator.inputs[0].full_name + '_y2')
    x2 = oopb.add_node('Add', [x1, width_exp],
                       operator.inputs[0].full_name + '_x2')

    windows_squeeze = oopb.apply_squeeze(windows_transpose,
                                         name=operator.full_name +
                                         '_windows_squeeze',
                                         axes=[0])[0]
    wy1 = oopb.add_node('Slice', [
        windows_squeeze, ('_start', oopb.int64, np.array([0], dtype='int64')),
        ('_end', oopb.int64, np.array([1], dtype='int64')),
        ('_axes', oopb.int64, np.array([0], dtype='int64'))
    ], operator.inputs[0].full_name + '_windows_0')
    wx1 = oopb.add_node('Slice', [
        windows_squeeze, ('_start', oopb.int64, np.array([1], dtype='int64')),
        ('_end', oopb.int64, np.array([2], dtype='int64')),
        ('_axes', oopb.int64, np.array([0], dtype='int64'))
    ], operator.inputs[0].full_name + '_windows_1')
    wy2 = oopb.add_node('Slice', [
        windows_squeeze, ('_start', oopb.int64, np.array([2], dtype='int64')),
        ('_end', oopb.int64, np.array([3], dtype='int64')),
        ('_axes', oopb.int64, np.array([0], dtype='int64'))
    ], operator.inputs[0].full_name + '_windows_2')
    wx2 = oopb.add_node('Slice', [
        windows_squeeze, ('_start', oopb.int64, np.array([3], dtype='int64')),
        ('_end', oopb.int64, np.array([4], dtype='int64')),
        ('_axes', oopb.int64, np.array([0], dtype='int64'))
    ], operator.inputs[0].full_name + '_windows_3')
    y1_min = oopb.add_node('Min', [y1, wy2],
                           operator.inputs[0].full_name + '_y1_min')
    x1_min = oopb.add_node('Min', [x1, wx2],
                           operator.inputs[0].full_name + '_x1_min')
    y2_min = oopb.add_node('Min', [y2, wy2],
                           operator.inputs[0].full_name + '_y2_min')
    x2_min = oopb.add_node('Min', [x2, wx2],
                           operator.inputs[0].full_name + '_x2_min')
    y1_max = oopb.add_node('Max', [y1_min, wy1],
                           operator.inputs[0].full_name + '_y1_max')
    x1_max = oopb.add_node('Max', [x1_min, wx1],
                           operator.inputs[0].full_name + '_x1_max')
    y2_max = oopb.add_node('Max', [y2_min, wy1],
                           operator.inputs[0].full_name + '_y2_max')
    x2_max = oopb.add_node('Max', [x2_min, wx1],
                           operator.inputs[0].full_name + '_x2_max')
    concat_result = scope.get_unique_variable_name(
        operator.output_full_names[0] + '_concat_result')
    attrs = {'axis': 1}
    container.add_node("Concat", [y1_max, x1_max, y2_max, x2_max],
                       concat_result,
                       op_version=operator.target_opset,
                       name=operator.outputs[0].full_name + '_concat_result',
                       **attrs)

    concat_unsqueeze = oopb.apply_unsqueeze(concat_result,
                                            name=operator.full_name +
                                            '_concat_unsqueeze',
                                            axes=[0])[0]
    return concat_unsqueeze