Exemple #1
0
    def __call__(self, y_true, y_pred):
        # There are additional parameters for this function
        # Note: some of the 'modes' for edge behavior do not yet have a
        # gradient definition in the Theano tree
        #   and cannot be used for learning

        kernel = [self.kernel_size, self.kernel_size]
        y_true = K.reshape(y_true, [-1] + list(self.__int_shape(y_pred)[1:]))
        y_pred = K.reshape(y_pred, [-1] + list(self.__int_shape(y_pred)[1:]))

        patches_pred = KC.extract_image_patches(y_pred, kernel, kernel,
                                                'valid', self.dim_ordering)
        patches_true = KC.extract_image_patches(y_true, kernel, kernel,
                                                'valid', self.dim_ordering)

        # Reshape to get the var in the cells
        bs, w, h, c1, c2, c3 = self.__int_shape(patches_pred)
        patches_pred = K.reshape(patches_pred, [-1, w, h, c1 * c2 * c3])
        patches_true = K.reshape(patches_true, [-1, w, h, c1 * c2 * c3])
        # Get mean
        u_true = K.mean(patches_true, axis=-1)
        u_pred = K.mean(patches_pred, axis=-1)
        # Get variance
        var_true = K.var(patches_true, axis=-1)
        var_pred = K.var(patches_pred, axis=-1)
        # Get std dev
        covar_true_pred = K.mean(patches_true * patches_pred,
                                 axis=-1) - u_true * u_pred

        ssim = (2 * u_true * u_pred + self.c1) * (2 * covar_true_pred +
                                                  self.c2)
        denom = ((K.square(u_true) + K.square(u_pred) + self.c1) *
                 (var_pred + var_true + self.c2))
        ssim /= denom  # no need for clipping, c1 and c2 make the denom non-zero
        return K.mean((1.0 - ssim) / 2.0)
def DSSIM_base(y_true, y_pred, kernel_size):
    kernel = [kernel_size, kernel_size]
    y_true = K.reshape(y_true, [-1] + list(K.int_shape(y_pred)[1:]))
    y_pred = K.reshape(y_pred, [-1] + list(K.int_shape(y_pred)[1:]))

    patches_pred = KC.extract_image_patches(y_pred, kernel, kernel, 'valid',
                                            K.image_data_format())
    patches_true = KC.extract_image_patches(y_true, kernel, kernel, 'valid',
                                            K.image_data_format())

    # Reshape to get the var in the cells
    bs, w, h, c1, c2, c3 = K.int_shape(patches_pred)
    patches_pred = K.reshape(patches_pred, [-1, w, h, c1 * c2 * c3])
    patches_true = K.reshape(patches_true, [-1, w, h, c1 * c2 * c3])
    # Get mean
    u_true = K.mean(patches_true, axis=-1)
    u_pred = K.mean(patches_pred, axis=-1)
    # Get variance
    var_true = K.var(patches_true, axis=-1)
    var_pred = K.var(patches_pred, axis=-1)
    # Get std dev
    covar_true_pred = K.mean(patches_true * patches_pred,
                             axis=-1) - u_true * u_pred

    ssim = (2 * u_true * u_pred + 0.01**2) * (2 * covar_true_pred + 0.03**2)
    denom = ((K.square(u_true) + K.square(u_pred) + 0.01**2) *
             (var_pred + var_true + 0.03**2))
    ssim /= denom  # no need for clipping, c1 and c2 make the denom non-zero
    print('----------------------', K.mean((1.0 - ssim) / 2.0))
    return K.mean((1.0 - ssim) / 2.0)
Exemple #3
0
def SSIM(y_true, y_pred):
    # There are additional parameters for this function
    # Note: some of the 'modes' for edge behavior do not yet have a gradient definition in the Theano tree
    #   and cannot be used for learning
    kernel_size = 3
    k1 = 0.01
    k2 = 0.03
    max_value = 1.0
    c1 = (k1 * max_value)**2
    c2 = (k2 * max_value)**2
    dim_ordering = K.image_data_format()
    #backend = KC.backend()
    kernel = [kernel_size, kernel_size]
    y_true = KC.reshape(y_true, [-1] + list(int_shape(y_pred)[1:]))
    y_pred = KC.reshape(y_pred, [-1] + list(int_shape(y_pred)[1:]))

    patches_pred = KC.extract_image_patches(y_pred, kernel, kernel, 'valid',
                                            dim_ordering)
    patches_true = KC.extract_image_patches(y_true, kernel, kernel, 'valid',
                                            dim_ordering)

    # Reshape to get the var in the cells
    bs, w, h, c1, c2, c3 = int_shape(patches_pred)
    patches_pred = KC.reshape(patches_pred, [-1, w, h, c1 * c2 * c3])
    patches_true = KC.reshape(patches_true, [-1, w, h, c1 * c2 * c3])
    # Get mean
    u_true = KC.mean(patches_true, axis=-1)
    u_pred = KC.mean(patches_pred, axis=-1)
    # Get variance
    var_true = K.var(patches_true, axis=-1)
    var_pred = K.var(patches_pred, axis=-1)
    # Get std dev
    covar_true_pred = K.mean(patches_true * patches_pred,
                             axis=-1) - u_true * u_pred

    ssim = (2 * u_true * u_pred + c1) * (2 * covar_true_pred + c2)
    denom = (K.square(u_true) + K.square(u_pred) + c1) * (var_pred + var_true +
                                                          c2)
    ssim /= denom  # no need for clipping, c1 and c2 make the denom non-zero
    return ssim  #K.mean((1.0 - ssim) / 2.0)
Exemple #4
0
def ssim_loss(y_true, y_pred):
    kernel = [3, 3]
    k1 = 0.01
    k2 = 0.03
    kernel_size = 3
    max_value = 1.0
    cc1 = (k1 * max_value)**2
    cc2 = (k2 * max_value)**2
    y_true = K.reshape(y_true, [-1] + list(K.int_shape(y_pred)[1:]))
    y_pred = K.reshape(y_pred, [-1] + list(K.int_shape(y_pred)[1:]))

    patches_pred = KC.extract_image_patches(y_pred, kernel, kernel, 'valid',
                                            K.image_data_format())
    patches_true = KC.extract_image_patches(y_true, kernel, kernel, 'valid',
                                            K.image_data_format())

    bs, w, h, c1, c2, c3 = K.int_shape(patches_pred)

    patches_pred = K.reshape(patches_pred, [-1, w, h, c1 * c2 * c3])
    patches_true = K.reshape(patches_true, [-1, w, h, c1 * c2 * c3])
    # Get mean
    u_true = K.mean(patches_true, axis=-1)
    u_pred = K.mean(patches_pred, axis=-1)
    # Get variance
    var_true = K.var(patches_true, axis=-1)
    var_pred = K.var(patches_pred, axis=-1)
    # Get covariance
    covar_true_pred = K.mean(patches_true * patches_pred,
                             axis=-1) - u_true * u_pred

    ssim = (2 * u_true * u_pred + cc1) * (2 * covar_true_pred + cc2)
    denom = (K.square(u_true) + K.square(u_pred) + cc1) * \
        (var_pred + var_true + cc2)
    ssim /= denom

    return K.mean((1.0 - ssim) / 2.0)