def generate_mean_pixel_file(): C = Config() all_imgs, _, _ = get_data(ROI_BBOX_FILE) avg = [0, 0, 0] for img_data in all_imgs: print(img_data['filepath']) img_data_aug, x_img = augment(img_data, C, augment=False) (width, height) = (img_data_aug['width'], img_data_aug['height']) (rows, cols, _) = x_img.shape # get image dimensions for resizing (resized_width, resized_height) = get_new_img_size(width, height, C.im_size) # resize the image so that smalles side is length = 600px x_img = cv2.resize(x_img, (resized_width, resized_height), interpolation=cv2.INTER_CUBIC) pixels = (resized_width * resized_height) avg[0] += np.sum(x_img[:, :, 0]) / pixels avg[1] += np.sum(x_img[:, :, 1]) / pixels avg[2] += np.sum(x_img[:, :, 2]) / pixels avg = [a / len(all_imgs) for a in list(avg)] np.savetxt(MEAN_PIXEL_FILE, avg, delimiter=',')
def train(model_name, epochs=60, batch_size=1, lr=0.0001, decay=0.001): t = time.time() all_imgs, classes_count, class_mapping = get_data(ROI_BBOX_FILE) print("Parsing annotation files took " + str((time.time() - t) / 1000) + "s") num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios) C.model_name = model_name if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) if not os.path.isfile(ROI_CLASSES_FILE): with open(ROI_CLASSES_FILE, 'w') as class_data_json: json.dump(class_mapping, class_data_json) print('Num classes (including bg) = {}'.format(len(classes_count))) random.shuffle(all_imgs) train_imgs = [s for s in all_imgs if s['imageset'] == 'trainval'] val_imgs = [s for s in all_imgs if s['imageset'] == 'test'] print('Num train samples {}'.format(len(train_imgs))) print('Num val samples {}'.format(len(val_imgs))) model = build_model(classes_count, num_anchors) optimizer = Adam(lr=lr, decay=decay) model.compile(optimizer=optimizer, loss=[losses.rpn_loss_cls(num_anchors), losses.rpn_loss_regr(num_anchors), losses.class_loss_cls, losses.class_loss_regr(C.num_rois, len(classes_count) - 1)], metrics={'dense_class_{}_loss'.format(len(classes_count)): 'accuracy'}) data_gen_train = data_generators.get_anchor_gt(train_imgs, class_mapping, classes_count, C, K.image_dim_ordering(), mode='train') data_gen_val = data_generators.get_anchor_gt(val_imgs, class_mapping, classes_count, C, K.image_dim_ordering(), mode='val') callbacks = [EarlyStopping(monitor='val_loss', patience=20, verbose=0), ModelCheckpoint(C.get_model_path(), monitor='val_loss', save_best_only=True, verbose=0), ReduceLROnPlateau(monitor='loss', factor=0.1, patience=5, min_lr=1e-7, verbose=1), LoggingCallback(C)] print('Starting training') model.fit_generator(data_gen_train, steps_per_epoch=ceil(len(train_imgs) / batch_size), epochs=epochs, validation_data=data_gen_val, validation_steps=ceil(len(train_imgs) / batch_size), callbacks=callbacks, max_q_size=1, workers=1)
def train_kitti(): # config for data argument cfg = config.Config() cfg.use_horizontal_flips = True cfg.use_vertical_flips = True cfg.rot_90 = True cfg.num_rois = 32 cfg.base_net_weights = os.path.join('./model/', nn.get_weight_path()) # cfg.base_net_weights=r'' # TODO: the only file should to be change for other data to train cfg.model_path = '/media/private/Ci/log/plane/frcnn/vgg-adam' now = datetime.datetime.now() day = now.strftime('%y-%m-%d') for i in range(10000): if not os.path.exists('%s-%s-%d' % (cfg.model_path, day, i)): cfg.model_path = '%s-%s-%d' % (cfg.model_path, day, i) break make_dir(cfg.model_path) make_dir(cfg.model_path + '/loss') make_dir(cfg.model_path + '/loss_rpn_cls') make_dir(cfg.model_path + '/loss_rpn_regr') make_dir(cfg.model_path + '/loss_class_cls') make_dir(cfg.model_path + '/loss_class_regr') cfg.simple_label_file = '/media/public/GEOWAY/plane/plane0817.csv' all_images, classes_count, class_mapping = get_data(cfg.simple_label_file) if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) cfg.class_mapping = class_mapping cfg.config_save_file = os.path.join(cfg.model_path, 'config.pickle') with open(cfg.config_save_file, 'wb') as config_f: pickle.dump(cfg, config_f) print( 'Config has been written to {}, and can be loaded when testing to ensure correct results' .format(cfg.config_save_file)) inv_map = {v: k for k, v in class_mapping.items()} print('Training images per class:') pprint.pprint(classes_count) print('Num classes (including bg) = {}'.format(len(classes_count))) random.shuffle(all_images) num_imgs = len(all_images) train_imgs = [s for s in all_images if s['imageset'] == 'trainval'] val_imgs = [s for s in all_images if s['imageset'] == 'test'] print('Num train samples {}'.format(len(train_imgs))) print('Num val samples {}'.format(len(val_imgs))) data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, cfg, nn.get_img_output_length, K.image_dim_ordering(), mode='train') data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, cfg, nn.get_img_output_length, K.image_dim_ordering(), mode='val') Q = multiprocessing.Manager().Queue(maxsize=30) def fill_Q(n): while True: if not Q.full(): Q.put(next(data_gen_train)) #print(Q.qsize(),'put',n) else: time.sleep(0.00001) threads = [] for i in range(4): thread = multiprocessing.Process(target=fill_Q, args=(i, )) threads.append(thread) thread.start() if K.image_dim_ordering() == 'th': input_shape_img = (3, None, None) else: input_shape_img = (None, None, 3) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(None, 4)) # define the base network (resnet here, can be VGG, Inception, etc) shared_layers = nn.nn_base(img_input, trainable=True) # define the RPN, built on the base layers num_anchors = len(cfg.anchor_box_scales) * len(cfg.anchor_box_ratios) rpn = nn.rpn(shared_layers, num_anchors) classifier = nn.classifier(shared_layers, roi_input, cfg.num_rois, nb_classes=len(classes_count), trainable=True) model_rpn = Model(img_input, rpn[:2]) model_classifier = Model([img_input, roi_input], classifier) # this is a model that holds both the RPN and the classifier, used to load/save weights for the models model_all = Model([img_input, roi_input], rpn[:2] + classifier) # model_all.summary() from keras.utils import plot_model # os.environ['PATH'] = os.environ['PATH'] + r';C:\Program Files (x86)\Graphviz2.38\bin;' plot_model(model_all, 'model_all.png', show_layer_names=True, show_shapes=True) plot_model(model_classifier, 'model_classifier.png', show_layer_names=True, show_shapes=True) plot_model(model_rpn, 'model_rpn.png', show_layer_names=True, show_shapes=True) ''' try: print('loading weights from {}'.format(cfg.base_net_weights)) model_rpn.load_weights(cfg.model_path, by_name=True) model_classifier.load_weights(cfg.model_path, by_name=True) except Exception as e: print(e) print('Could not load pretrained model weights. Weights can be found in the keras application folder ' 'https://github.com/fchollet/keras/tree/master/keras/applications') ''' optimizer = adadelta() optimizer_classifier = adadelta() model_rpn.compile(optimizer=optimizer, loss=[ losses_fn.rpn_loss_cls(num_anchors), losses_fn.rpn_loss_regr(num_anchors) ]) model_classifier.compile( optimizer=optimizer_classifier, loss=[ losses_fn.class_loss_cls, losses_fn.class_loss_regr(len(classes_count) - 1) ], metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'}) model_all.compile(optimizer='sgd', loss='mae') epoch_length = 10 num_epochs = int(cfg.num_epochs) iter_num = 0 losses = np.zeros((epoch_length, 5)) rpn_accuracy_rpn_monitor = [] rpn_accuracy_for_epoch = [] start_time = time.time() best_loss = np.Inf best_rpn_cls = np.Inf best_rpn_regr = np.Inf best_class_cls = np.Inf best_class_regr = np.Inf class_mapping_inv = {v: k for k, v in class_mapping.items()} print('Starting training') vis = True for epoch_num in range(num_epochs): progbar = generic_utils.Progbar(epoch_length) print('Epoch {}/{}'.format(epoch_num + 1, num_epochs)) while True: try: if len(rpn_accuracy_rpn_monitor ) == epoch_length and cfg.verbose: mean_overlapping_bboxes = float( sum(rpn_accuracy_rpn_monitor)) / len( rpn_accuracy_rpn_monitor) rpn_accuracy_rpn_monitor = [] print( 'Average number of overlapping bounding boxes from RPN = {} for {} previous iterations' .format(mean_overlapping_bboxes, epoch_length)) if mean_overlapping_bboxes == 0: print( 'RPN is not producing bounding boxes that overlap' ' the ground truth boxes. Check RPN settings or keep training.' ) # X, Y, img_data = next(data_gen_train) while True: if Q.empty(): time.sleep(0.00001) continue X, Y, img_data = Q.get() # print(Q.qsize(),'get') break # print(X.shape,Y.shape) loss_rpn = model_rpn.train_on_batch(X, Y) P_rpn = model_rpn.predict_on_batch(X) result = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], cfg, K.image_dim_ordering(), use_regr=True, overlap_thresh=0.7, max_boxes=300) # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format X2, Y1, Y2, IouS = roi_helpers.calc_iou( result, img_data, cfg, class_mapping) if X2 is None: rpn_accuracy_rpn_monitor.append(0) rpn_accuracy_for_epoch.append(0) continue neg_samples = np.where(Y1[0, :, -1] == 1) pos_samples = np.where(Y1[0, :, -1] == 0) if len(neg_samples) > 0: neg_samples = neg_samples[0] else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) if cfg.num_rois > 1: if len(pos_samples) < cfg.num_rois // 2: selected_pos_samples = pos_samples.tolist() else: selected_pos_samples = np.random.choice( pos_samples, cfg.num_rois // 2, replace=False).tolist() try: selected_neg_samples = np.random.choice( neg_samples, cfg.num_rois - len(selected_pos_samples), replace=False).tolist() except: selected_neg_samples = np.random.choice( neg_samples, cfg.num_rois - len(selected_pos_samples), replace=True).tolist() sel_samples = selected_pos_samples + selected_neg_samples else: # in the extreme case where num_rois = 1, we pick a random pos or neg sample selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) loss_class = model_classifier.train_on_batch( [X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]]) losses[iter_num, 0] = loss_rpn[1] losses[iter_num, 1] = loss_rpn[2] losses[iter_num, 2] = loss_class[1] losses[iter_num, 3] = loss_class[2] losses[iter_num, 4] = loss_class[3] iter_num += 1 progbar.update( iter_num, [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])), ('detector_cls', np.mean(losses[:iter_num, 2])), ('detector_regr', np.mean(losses[:iter_num, 3]))]) if iter_num == epoch_length: loss_rpn_cls = np.mean(losses[:, 0]) loss_rpn_regr = np.mean(losses[:, 1]) loss_class_cls = np.mean(losses[:, 2]) loss_class_regr = np.mean(losses[:, 3]) class_acc = np.mean(losses[:, 4]) mean_overlapping_bboxes = float(sum( rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] if cfg.verbose: print( 'Mean number of bounding boxes from RPN overlapping ground truth boxes: {}' .format(mean_overlapping_bboxes)) print( 'Classifier accuracy for bounding boxes from RPN: {}' .format(class_acc)) print('Loss RPN classifier: {}'.format(loss_rpn_cls)) print('Loss RPN regression: {}'.format(loss_rpn_regr)) print('Loss Detector classifier: {}'.format( loss_class_cls)) print('Loss Detector regression: {}'.format( loss_class_regr)) print('Elapsed time: {}'.format(time.time() - start_time)) curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr iter_num = 0 start_time = time.time() if curr_loss < best_loss: if cfg.verbose: print( 'Total loss decreased from {} to {}, saving weights' .format(best_loss, curr_loss)) best_loss = curr_loss model_all.save_weights( '%s/%s/E-%d-loss-%.4f-rpnc-%.4f-rpnr-%.4f-cls-%.4f-cr-%.4f.hdf5' % (cfg.model_path, 'loss', epoch_num, curr_loss, loss_rpn_cls, loss_rpn_regr, loss_class_cls, loss_class_regr)) if loss_rpn_cls < best_rpn_cls: if cfg.verbose: print( 'loss_rpn_cls decreased from {} to {}, saving weights' .format(best_rpn_cls, loss_rpn_cls)) best_rpn_cls = loss_rpn_cls model_all.save_weights( '%s/%s/E-%d-loss-%.4f-rpnc-%.4f-rpnr-%.4f-cls-%.4f-cr-%.4f.hdf5' % (cfg.model_path, 'loss_rpn_cls', epoch_num, curr_loss, loss_rpn_cls, loss_rpn_regr, loss_class_cls, loss_class_regr)) if loss_rpn_regr < best_rpn_regr: if cfg.verbose: print( 'loss_rpn_regr decreased from {} to {}, saving weights' .format(best_rpn_regr, loss_rpn_regr)) best_rpn_regr = loss_rpn_regr model_all.save_weights( '%s/%s/E-%d-loss-%.4f-rpnc-%.4f-rpnr-%.4f-cls-%.4f-cr-%.4f.hdf5' % (cfg.model_path, 'loss_rpn_regr', epoch_num, curr_loss, loss_rpn_cls, loss_rpn_regr, loss_class_cls, loss_class_regr)) if loss_class_cls < best_class_cls: if cfg.verbose: print( 'loss_class_cls decreased from {} to {}, saving weights' .format(best_loss, loss_class_cls)) best_class_cls = loss_class_cls model_all.save_weights( '%s/%s/E-%d-loss-%.4f-rpnc-%.4f-rpnr-%.4f-cls-%.4f-cr-%.4f.hdf5' % (cfg.model_path, 'loss_class_cls', epoch_num, curr_loss, loss_rpn_cls, loss_rpn_regr, loss_class_cls, loss_class_regr)) if loss_class_regr < best_class_regr: if cfg.verbose: print( 'loss_class_regr decreased from {} to {}, saving weights' .format(best_loss, loss_class_regr)) best_class_regr = loss_class_regr model_all.save_weights( '%s/%s/E-%d-loss-%.4f-rpnc-%.4f-rpnr-%.4f-cls-%.4f-cr-%.4f.hdf5' % (cfg.model_path, 'loss_class_regr', epoch_num, curr_loss, loss_rpn_cls, loss_rpn_regr, loss_class_cls, loss_class_regr)) break except Exception as e: # print('Exception: {}'.format(e)) # save model # model_all.save_weights(cfg.model_path) continue print('Training complete, exiting.')
def Measure_map(test_path, network_arch, config_filename, preprocessing_function=None, mAP_threshold=0.5): """Function to measure Mean Average prediction metric for object detection Keyword Arguments test_path --str: Path to the .txt file of testing train (No default) network_arc --object: the full faster rcnn network .py file passed as an object (no default) config_filename --str: Path to config file (No default) preprocessing_function --function: optional image preprocessing function (Default None) mAP threshold --float: (0,1) The min threshold to consider as a correct prediction (default 0.5) Output: prints the Map on the test dataset and returns a list of all Maps """ nn = network_arch def get_map(pred, gt, f, threshold): T = {} P = {} fx, fy = f for bbox in gt: bbox['bbox_matched'] = False pred_probs = np.array([s['prob'] for s in pred]) box_idx_sorted_by_prob = np.argsort(pred_probs)[::-1] for box_idx in box_idx_sorted_by_prob: pred_box = pred[box_idx] pred_class = pred_box['class'] pred_x1 = pred_box['x1'] pred_x2 = pred_box['x2'] pred_y1 = pred_box['y1'] pred_y2 = pred_box['y2'] pred_prob = pred_box['prob'] if pred_class not in P: P[pred_class] = [] T[pred_class] = [] P[pred_class].append(pred_prob) found_match = False for gt_box in gt: gt_class = gt_box['class'] gt_x1 = gt_box['x1'] / fx gt_x2 = gt_box['x2'] / fx gt_y1 = gt_box['y1'] / fy gt_y2 = gt_box['y2'] / fy gt_seen = gt_box['bbox_matched'] if gt_class != pred_class: continue if gt_seen: continue iou = data_generators.iou((pred_x1, pred_y1, pred_x2, pred_y2), (gt_x1, gt_y1, gt_x2, gt_y2)) if iou >= threshold: #0.5 default found_match = True gt_box['bbox_matched'] = True break else: continue T[pred_class].append(int(found_match)) for gt_box in gt: if not gt_box['bbox_matched']: if gt_box['class'] not in P: P[gt_box['class']] = [] T[gt_box['class']] = [] T[gt_box['class']].append(1) P[gt_box['class']].append(0) #import pdb #pdb.set_trace() return T, P with open(config_filename, 'rb') as f_in: C = pickle.load(f_in) # turn off any train augmentation at test time C.use_horizontal_flips = False C.use_vertical_flips = False C.rot_90 = False def format_img(img, C, preprocessing_function): img_min_side = float(C.im_size) (height, width, _) = img.shape if width <= height: f = img_min_side / width new_height = int(f * height) new_width = int(img_min_side) else: f = img_min_side / height new_width = int(f * width) new_height = int(img_min_side) fx = width / float(new_width) fy = height / float(new_height) img = cv2.resize(img, (new_width, new_height), interpolation=cv2.INTER_CUBIC) img = img[:, :, (2, 1, 0)] #bgr to RGB if preprocessing_function: img = preprocessing_function(img) # img = np.transpose(img, (2, 0, 1)) theano format img = np.expand_dims(img, axis=0) return img, fx, fy class_mapping = C.class_mapping if 'bg' not in class_mapping: class_mapping['bg'] = len(class_mapping) class_mapping = {v: k for k, v in class_mapping.items()} print(class_mapping) # load the models input_shape_img = (None, None, 3) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(None, 4)) shared_layers = nn.nn_base(img_input) num_features = shared_layers.get_shape().as_list()[3] #512 for vgg-16 feature_map_input = Input(shape=(None, None, num_features)) num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios) rpn = nn.rpn(shared_layers, num_anchors) classifier = nn.classifier(feature_map_input, roi_input, C.num_rois, len(class_mapping)) # create a keras model model_rpn = Model(img_input, rpn) model_classifier = Model([feature_map_input, roi_input], classifier) #Note: The model_classifier in training and testing are different. # In training model_classifier and model_rpn both have the base_nn. # while testing only model_rpn has the base_nn it returns the FM of base_nn # Thus the model_classifier has the FM and ROI as input # This is done to increase the testing speed print('Loading weights from {}'.format(C.weights_all_path)) model_rpn.load_weights(C.weights_all_path, by_name=True) model_classifier.load_weights(C.weights_all_path, by_name=True) test_imgs, _, _ = get_data(test_path) T = {} P = {} ALL_MAP_LIST = [] for idx, img_data in enumerate(test_imgs): print('{}/{}'.format(idx, len(test_imgs))) st = time.time() filepath = img_data['filepath'] img = cv2.imread(filepath) X, fx, fy = format_img(img, C, preprocessing_function) # get the feature maps and output from the RPN [Y1, Y2, F] = model_rpn.predict(X) R = roi_helpers.rpn_to_roi(Y1, Y2, C, K.image_dim_ordering(), overlap_thresh=C.rpn_nms_threshold, flag="test") # convert from (x1,y1,x2,y2) to (x,y,w,h) R[:, 2] -= R[:, 0] R[:, 3] -= R[:, 1] # apply the spatial pyramid pooling to the proposed regions bboxes = {} probs = {} for jk in range(R.shape[0] // C.num_rois + 1): ROIs = np.expand_dims(R[C.num_rois * jk:C.num_rois * (jk + 1), :], axis=0) if ROIs.shape[1] == 0: break if jk == R.shape[0] // C.num_rois: # pad R curr_shape = ROIs.shape target_shape = (curr_shape[0], C.num_rois, curr_shape[2]) ROIs_padded = np.zeros(target_shape).astype(ROIs.dtype) ROIs_padded[:, :curr_shape[1], :] = ROIs ROIs_padded[0, curr_shape[1]:, :] = ROIs[0, 0, :] ROIs = ROIs_padded [P_cls, P_regr] = model_classifier.predict([F, ROIs]) for ii in range(P_cls.shape[1]): if np.argmax(P_cls[0, ii, :]) == (P_cls.shape[2] - 1): continue cls_name = class_mapping[np.argmax(P_cls[0, ii, :])] if cls_name not in bboxes: bboxes[cls_name] = [] probs[cls_name] = [] (x, y, w, h) = ROIs[0, ii, :] cls_num = np.argmax(P_cls[0, ii, :]) try: (tx, ty, tw, th) = P_regr[0, ii, 4 * cls_num:4 * (cls_num + 1)] tx /= C.classifier_regr_std[0] ty /= C.classifier_regr_std[1] tw /= C.classifier_regr_std[2] th /= C.classifier_regr_std[3] x, y, w, h = roi_helpers.apply_regr( x, y, w, h, tx, ty, tw, th) except: pass bboxes[cls_name].append( [16 * x, 16 * y, 16 * (x + w), 16 * (y + h)]) probs[cls_name].append(np.max(P_cls[0, ii, :])) all_dets = [] for key in bboxes: bbox = np.array(bboxes[key]) new_boxes, new_probs = roi_helpers.non_max_suppression_fast( bbox, np.array(probs[key]), overlap_thresh=C.test_roi_nms_threshold, max_boxes=C.TEST_RPN_POST_NMS_TOP_N) for jk in range(new_boxes.shape[0]): (x1, y1, x2, y2) = new_boxes[jk, :] det = { 'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2, 'class': key, 'prob': new_probs[jk] } all_dets.append(det) print('Elapsed time = {}'.format(time.time() - st)) t, p = get_map(all_dets, img_data['bboxes'], (fx, fy), mAP_threshold) for key in t.keys(): if key not in T: T[key] = [] P[key] = [] T[key].extend(t[key]) P[key].extend(p[key]) all_aps = [] for key in T.keys(): ap = average_precision_score(T[key], P[key]) print('{} AP: {}'.format(key, ap)) all_aps.append(ap) print('mAP = {}'.format(np.mean(np.array(all_aps)))) ALL_MAP_LIST.append(np.mean(np.array(all_aps))) return (ALL_MAP_LIST)
with open(config_output_filename, 'rb') as f_in: C = pickle.load(f_in) if C.network == 'resnet50': import keras_frcnn.resnet as nn elif C.network == 'vgg': import keras_frcnn.vgg as nn # turn off any data augmentation at test time C.use_horizontal_flips = False C.use_vertical_flips = False C.rot_90 = False #img_path = options.test_path img_path, _, _ = get_data(options.test_path) def format_img_size(img, C): """ formats the image size based on config """ img_min_side = float(C.im_size) (height, width, _) = img.shape if width <= height: ratio = img_min_side / width new_height = int(ratio * height) new_width = int(img_min_side) else: ratio = img_min_side / height new_width = int(ratio * width) new_height = int(img_min_side)
with open(config_output_filename, 'rb') as f_in: C = pickle.load(f_in) if C.network == 'resnet50': import keras_frcnn.resnet as nn elif C.network == 'vgg': import keras_frcnn.vgg as nn # turn off any data augmentation at test time C.use_horizontal_flips = False C.use_vertical_flips = False C.rot_90 = False class_mapping = C.class_mapping all_imgs, classes_count, class_mapping = get_data(options.test_path) if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) test_imgs = [ s for s in all_imgs if s['imageset'] == 'trainval' or s['imageset'] == 'test' ] print('Num train samples {}'.format(len(test_imgs))) data_gen_test = data_generators.get_anchor_gt(test_imgs, classes_count, C,
if not os.path.isdir("models"): os.mkdir("models") C.num_rois = int(options.num_rois) # we will use resnet. may change to others from keras_frcnn import vgg16 as nn # check if weight path was passed via command line if options.input_weight_path: C.model_path = options.input_weight_path else: # set the path to weights based on backend and model C.model_path = nn.get_weight_path() all_imgs, classes_count, class_mapping = get_data(options.train_path, options.cat) if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) C.class_mapping = class_mapping inv_map = {v: k for k, v in class_mapping.items()} print('Training images per class:') pprint.pprint(classes_count) print('Num classes (including bg) = {}'.format(len(classes_count))) config_output_filename = options.config_filename
# load model nn: Any = None num_features = 1024 if C.network == "vgg": from keras_frcnn import vgg nn = vgg num_features = 512 elif C.network == "resnet": from keras_frcnn import resnet nn = resnet else: print(f"Not a valid model: {C.network}") raise ValueError all_imgs, classes_count, class_mapping = get_data(C.train_path) train_imgs, val_imgs = train_test_split(all_imgs, test_size=0.2, random_state=C.seed) if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) C.class_mapping = class_mapping print(class_mapping) inv_map = {v: k for k, v in class_mapping.items()} print('Training images per class:')
def train_fasterrcnn(): # config for data argument cfg = config.Config() cfg.balanced_classes = True cfg.use_horizontal_flips = True cfg.use_vertical_flips = True cfg.rot_90 = True cfg.num_rois = 50 #50# 对于星图杯的光学遥感飞机检测,应该改为50+ cfg.anchor_box_scales = [10, 30, 50, 80, 100] #[41,70,120,20,90] cfg.anchor_box_ratios = [[1, 1.2], [1, 1], [1.2, 1]] #[[1,1.4],[1,0.84],[1,1.17],[1,0.64],[1,1]] #cfg.rpn_stride = 8 cfg.im_size = 512 cfg.num_epochs = 100 cfg.epoch_length = 150 #1462 cfg.base_net_weights = os.path.join('./model/', nn.get_weight_path()) # TODO: the only file should to be change for other data to train cfg.model_path = './model/kitti_frcnn_last.hdf5' cfg.simple_label_file = 'DOTA2018_OpticalAircraft_bboxes.txt' #'kitti_simple_label.txt'#'E:/Xingtubei/official_datas/OpticalAircraft/laptop_Chreoc_OpticalAircraft_bboxes.txt' # '/media/liuhuaqing/Elements/Xingtubei/official_datas/OpticalAircraft/Chreoc_OpticalAircraft_bboxes.txt'#'F:/Xingtubei/official_datas/OpticalAircraft/Chreoc_OpticalAircraft_bboxes.txt' # 'kitti_simple_label.txt' all_images, classes_count, class_mapping = get_data( cfg.simple_label_file) #读取数据集,cv2.imread()要求数据里不能有中文路径 if 'bg' not in classes_count: #'bg'应该是代表背景 classes_count['bg'] = 0 # =0表示训练数据中没有“背景”这一类别 class_mapping['bg'] = len(class_mapping) cfg.class_mapping = class_mapping with open(cfg.config_save_file, 'wb') as config_f: pickle.dump(cfg, config_f) print( 'Config has been written to {}, and can be loaded when testing to ensure correct results' .format(cfg.config_save_file)) inv_map = {v: k for k, v in class_mapping.items()} #class_mapping的逆向map print('Training images per class:') pprint.pprint(classes_count) print('Num classes (including bg) = {}'.format(len(classes_count))) random.shuffle(all_images) num_imgs = len(all_images) train_imgs = [s for s in all_images if s['imageset'] == 'trainval'] #训练集,列表形式,列表中的元素是字典 val_imgs = [s for s in all_images if s['imageset'] == 'test'] #验证集,列表形式,列表中的元素是字典 print('Num train samples {}'.format(len(train_imgs))) print('Num val samples {}'.format(len(val_imgs))) data_gen_train = data_generators.get_anchor_gt( train_imgs, classes_count, cfg, nn.get_img_output_length, K.image_dim_ordering(), mode='train') #数据扩增,然后生成frcnn所需的训练数据(如:图片、rpn的梯度等等) data_gen_val = data_generators.get_anchor_gt( val_imgs, classes_count, cfg, nn.get_img_output_length, K.image_dim_ordering(), mode='val') #数据扩增,然后生成frcnn所需的验证数据(如:图片、rpn的梯度等等) # 根据keras实际用的后端,定义相应的输入数据维度,因为两类后端的维度顺序不一样 if K.image_dim_ordering() == 'th': input_shape_img = (3, None, None) #当后端是thaneo else: input_shape_img = (None, None, 3) #(None, None, 3)#当后端是tensorflow img_input = Input(shape=input_shape_img) # 输入图片 roi_input = Input(shape=(None, 4)) # 输入人工标注的roi坐标,4表示x1,y1,x2,y2 # define the base network (resnet here, can be VGG, Inception, etc) shared_layer, shared_layers_stage3, shared_layers_stage4 = nn.nn_base( img_input, trainable=True) # shared_layers是frcnn网络底部那些共享的层,在这里是ResNet。由nn定义好 # define the RPN, built on the base layers num_anchors = len(cfg.anchor_box_scales) * len(cfg.anchor_box_ratios) rpn_stage3 = nn.rpn(shared_layers_stage3, num_anchors) print(rpn_stage3[1].shape) rpn_stage4 = nn.rpn(shared_layers_stage4, num_anchors) # [x_class, x_regr, base_layers] print(rpn_stage4[1].shape) # x_class的shape是(?,sharelayer的w/2,sharelayer的h/2,scale数*ratio数),x_regr的shape是(?,sharelayer的w/2,sharelayer的h/2,4*scale数*ratio数) rpn = nn.rpn(shared_layer, num_anchors) print(rpn[1].shape) # 在这里合并两个rpn分支 classifier = nn.classifier(shared_layer, roi_input, cfg.num_rois, nb_classes=len(classes_count), trainable=True) model_rpn = Model( inputs=img_input, outputs=rpn[:2] ) #rpn网络由keras_frcnn/resnet定义。rpn[:2]的前两个元素分别表示rpn网络的分类输出和回归输出 model_classifier = Model( inputs=[img_input, roi_input], outputs=classifier) #Keras的函数式模型为Model,即广义的拥有输入和输出的模型 # this is a model that holds both the RPN and the classifier, used to load/save weights for the models model_all = Model(inputs=[img_input, roi_input], outputs=rpn[:2] + classifier) #rpn[:2]+classifier的含义是?????? try: # 尝试载入已训练网络权值 print('loading weights from {}'.format(cfg.base_net_weights)) model_rpn.load_weights(cfg.model_path, by_name=True) model_classifier.load_weights(cfg.model_path, by_name=True) except Exception as e: print(e) print( 'Could not load pretrained model weights. Weights can be found in the keras application folder ' 'https://github.com/fchollet/keras/tree/master/keras/applications') optimizer = Adam(lr=1e-5) # 定义一个Adam求解器,学习率lr optimizer_classifier = Adam(lr=1e-5) # 定义一个Adam求解器,学习率lr # num_anchors等于9 model_rpn.compile(optimizer=optimizer, loss=[ losses_fn.rpn_loss_cls(num_anchors), losses_fn.rpn_loss_regr(num_anchors) ]) model_classifier.compile( optimizer=optimizer_classifier, loss=[ losses_fn.class_loss_cls, losses_fn.class_loss_regr(len(classes_count) - 1) ], metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'}) model_all.compile(optimizer='sgd', loss='mae') #mae表示绝对值均差 epoch_length = cfg.epoch_length # epoch_length是一个周期的迭代次数(也等于训练数据量)。每迭代epoch_length次就检查一次是否要保存网络权值,然后重置iter_num = 0 num_epochs = int(cfg.num_epochs) iter_num = 0 # 迭代次数的初值 losses = np.zeros((epoch_length, 5)) # 初始化loss数组,记录每个周期的loss rpn_accuracy_rpn_monitor = [] # 初始化一个数组,记录rpn的训练过程中的精度变化 rpn_accuracy_for_epoch = [] # 初始化一个数组,记录rpn的每个训练周期的的精度变化 start_time = time.time() # 开始训练的时间 best_loss = np.Inf # 训练以来最小的loss class_mapping_inv = {v: k for k, v in class_mapping.items() } # class_mapping_inv是一个字典,key是目标类别编号,value是类别名称 print('Starting training') vis = True for epoch_num in range(num_epochs): progbar = generic_utils.Progbar(epoch_length) # 生成一个进度条对象 print('Epoch {}/{}'.format(epoch_num + 1, num_epochs)) # 输出当前训练周期数/总周期数 while True: # 什么时候才结束这个循环?答:第247行的break(每迭代epoch_length次) try: if len( rpn_accuracy_rpn_monitor ) == epoch_length and cfg.verbose: # 每epoch_length次训练周期就在窗口显示一次RPN平均精度 mean_overlapping_bboxes = float( sum(rpn_accuracy_rpn_monitor)) / len( rpn_accuracy_rpn_monitor) rpn_accuracy_rpn_monitor = [] print( 'Average number of overlapping bounding boxes from RPN = {} for {} previous iterations' .format(mean_overlapping_bboxes, epoch_length)) if mean_overlapping_bboxes == 0: print( 'RPN is not producing bounding boxes that overlap' ' the ground truth boxes. Check RPN settings or keep training.' ) # X是原图,如kitti尺寸是(1,600,1987,3)。 # Y是label,是有两个元素的list, # 其中第一个元素是类别,具体:shape是(1,share_layer_h,share_layer_w,2*scale数*ratio数),前一个元素为1(0)则表示是(不是)正或负样本,后一个为1(0)则表示是(不是)正样本 # 第二个元素是bbox,具体:shape是(1,share_layer_h,share_layer_w,8*scale数*ratio数),前四个元素表示是不是正样,后四个元素才是bbox#为什么来个repeat赋值给前面一半 # img_data是字典,包含文件名、尺寸、人工标记的roi和类别等 # X, Y, img_data = next(data_gen_train) #Y_1=Y[0] #Y_1=Y_1[0,:,:,:] loss_rpn = model_rpn.train_on_batch( X, Y) #为什么Y的尺寸与P_rpn的尺寸不同?为什么loss_rpn的尺寸是3,含义是什么,在哪里定义的? P_rpn = model_rpn.predict_on_batch( X) #P_rpn的尺寸是(1, 124, 38, 9) (1, 124, 38, 36) result = roi_helpers.rpn_to_roi( P_rpn[0], P_rpn[1], cfg, K.image_dim_ordering(), use_regr=True, overlap_thresh=0.7, max_boxes=300) #result的尺寸是300*4 # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format # X2的尺寸是100*4,Y1的尺寸是1*100*8(8=训练集中目标类别总数),IouS尺寸是100 X2, Y1, Y2, IouS = roi_helpers.calc_iou( result, img_data, cfg, class_mapping ) #Y2的尺寸是1*1*56,56=28*2,(28=4*7)前28是coords,后28是labels(是该类别则标1) if X2 is None: rpn_accuracy_rpn_monitor.append(0) rpn_accuracy_for_epoch.append(0) continue neg_samples = np.where( Y1[0, :, -1] == 1) #Y1的尺寸是1*1*8表示分类预测结果,最后一个元素为1表示是背景 pos_samples = np.where(Y1[0, :, -1] == 0) if len(neg_samples) > 0: neg_samples = neg_samples[0] else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) if cfg.num_rois > 1: if len(pos_samples) < cfg.num_rois // 2: selected_pos_samples = pos_samples.tolist() else: selected_pos_samples = np.random.choice( pos_samples, cfg.num_rois // 2, replace=False).tolist() try: selected_neg_samples = np.random.choice( neg_samples, cfg.num_rois - len(selected_pos_samples), replace=False).tolist() except: selected_neg_samples = np.random.choice( neg_samples, cfg.num_rois - len(selected_pos_samples), replace=True).tolist() sel_samples = selected_pos_samples + selected_neg_samples else: # in the extreme case where num_rois = 1, we pick a random pos or neg sample selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) loss_class = model_classifier.train_on_batch( [X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :] ]) #用rpn输出的roi输入给classifier losses[iter_num, 0] = loss_rpn[1] losses[iter_num, 1] = loss_rpn[2] losses[iter_num, 2] = loss_class[1] losses[iter_num, 3] = loss_class[2] losses[iter_num, 4] = loss_class[3] iter_num += 1 progbar.update( iter_num, [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])), ('detector_cls', np.mean(losses[:iter_num, 2])), ('detector_regr', np.mean(losses[:iter_num, 3]))]) if iter_num == epoch_length: # 每迭代epoch_length次就检查一次是否要保存网络权值,然后重置iter_num = 0 loss_rpn_cls = np.mean(losses[:, 0]) loss_rpn_regr = np.mean(losses[:, 1]) loss_class_cls = np.mean(losses[:, 2]) loss_class_regr = np.mean(losses[:, 3]) class_acc = np.mean(losses[:, 4]) mean_overlapping_bboxes = float(sum( rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] if cfg.verbose: print( 'Mean number of bounding boxes from RPN overlapping ground truth boxes: {}' .format(mean_overlapping_bboxes)) print( 'Classifier accuracy for bounding boxes from RPN: {}' .format(class_acc)) print('Loss RPN classifier: {}'.format(loss_rpn_cls)) print('Loss RPN regression: {}'.format(loss_rpn_regr)) print('Loss Detector classifier: {}'.format( loss_class_cls)) print('Loss Detector regression: {}'.format( loss_class_regr)) print('Elapsed time: {}'.format(time.time() - start_time)) curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr iter_num = 0 start_time = time.time() if curr_loss < best_loss: if cfg.verbose: print( 'Total loss decreased from {} to {}, saving weights' .format(best_loss, curr_loss)) best_loss = curr_loss model_all.save_weights(cfg.model_path) break except Exception as e: print('Exception: {}'.format(e)) # save model model_all.save_weights(cfg.model_path) continue print('Training complete, exiting.')
# pass the settings from the command line, and persist them in the config object C = config.Config() # set data augmentation C.model_path = options.output_weight_path C.num_rois = int(options.num_rois) # we will use resnet. may change to vgg if options.network == 'resnet50': from keras_frcnn import resnet as nn C.network = 'resnet50' else: print('Not a valid model') raise ValueError all_imgs, classes_count, _ = get_data(options.train_path) # add background class as 21st class if 'bg' not in classes_count: classes_count['bg'] = 0 print('Training images per class:') pprint.pprint(classes_count) print('Num classes (including bg) = {}'.format(len(classes_count))) with open(config_output_filename, 'wb') as config_f: pickle.dump(C,config_f) print('Config has been written to {}, and can be loaded when testing to ensure correct results'.format(config_output_filename)) random.shuffle(all_imgs) num_imgs = len(all_imgs)
def measure_map(config_output_filename, real_model_path): with open(config_output_filename, 'r') as f_in: C = pickle.load(f_in) # img_path = options.test_path img_path = '/home/comp/e4252392/map4frcnn.txt' class_mapping = C.class_mapping if 'bg' not in class_mapping: class_mapping['bg'] = len(class_mapping) class_mapping = {v: k for k, v in class_mapping.iteritems()} print(class_mapping) class_to_color = { class_mapping[v]: np.random.randint(0, 255, 3) for v in class_mapping } # C.num_rois = int(options.num_rois) C.num_rois = 32 if K.image_dim_ordering() == 'th': input_shape_img = (3, None, None) input_shape_features = (1024, None, None) else: input_shape_img = (None, None, 3) input_shape_features = (None, None, 1024) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(C.num_rois, 4)) feature_map_input = Input(shape=input_shape_features) # define the base network (resnet here, can be VGG, Inception, etc) shared_layers = nn.nn_base(img_input, trainable=True) # define the RPN, built on the base layers num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios) rpn_layers = nn.rpn(shared_layers, num_anchors) classifier = nn.classifier(feature_map_input, roi_input, C.num_rois, nb_classes=len(class_mapping), trainable=True) model_rpn = Model(img_input, rpn_layers) model_classifier_only = Model([feature_map_input, roi_input], classifier) model_classifier = Model([feature_map_input, roi_input], classifier) model_rpn.load_weights(real_model_path, by_name=True) model_classifier.load_weights(real_model_path, by_name=True) model_rpn.compile(optimizer='sgd', loss='mse') model_classifier.compile(optimizer='sgd', loss='mse') all_imgs, _, _ = get_data(img_path) # test_imgs = [s for s in all_imgs if s['imageset'] == 'test'] test_imgs = [s for s in all_imgs] T = {} P = {} print('Calculating mAP') st = time.time() for idx, img_data in enumerate(test_imgs): # print('{}/{}'.format(idx,len(test_imgs))) # st = time.time() filepath = img_data['filepath'] img = cv2.imread(filepath) X, fx, fy = format_img(img, C) if K.image_dim_ordering() == 'tf': X = np.transpose(X, (0, 2, 3, 1)) # get the feature maps and output from the RPN [Y1, Y2, F] = model_rpn.predict(X) R = roi_helpers.rpn_to_roi(Y1, Y2, C, K.image_dim_ordering(), overlap_thresh=0.7) # convert from (x1,y1,x2,y2) to (x,y,w,h) R[:, 2] -= R[:, 0] R[:, 3] -= R[:, 1] # apply the spatial pyramid pooling to the proposed regions bboxes = {} probs = {} for jk in range(R.shape[0] // C.num_rois + 1): ROIs = np.expand_dims(R[C.num_rois * jk:C.num_rois * (jk + 1), :], axis=0) if ROIs.shape[1] == 0: break if jk == R.shape[0] // C.num_rois: # pad R curr_shape = ROIs.shape target_shape = (curr_shape[0], C.num_rois, curr_shape[2]) ROIs_padded = np.zeros(target_shape).astype(ROIs.dtype) ROIs_padded[:, :curr_shape[1], :] = ROIs ROIs_padded[0, curr_shape[1]:, :] = ROIs[0, 0, :] ROIs = ROIs_padded [P_cls, P_regr] = model_classifier_only.predict([F, ROIs]) for ii in range(P_cls.shape[1]): if np.argmax(P_cls[0, ii, :]) == (P_cls.shape[2] - 1): continue cls_name = class_mapping[np.argmax(P_cls[0, ii, :])] if cls_name not in bboxes: bboxes[cls_name] = [] probs[cls_name] = [] (x, y, w, h) = ROIs[0, ii, :] cls_num = np.argmax(P_cls[0, ii, :]) try: (tx, ty, tw, th) = P_regr[0, ii, 4 * cls_num:4 * (cls_num + 1)] tx /= C.classifier_regr_std[0] ty /= C.classifier_regr_std[1] tw /= C.classifier_regr_std[2] th /= C.classifier_regr_std[3] x, y, w, h = roi_helpers.apply_regr( x, y, w, h, tx, ty, tw, th) except: pass bboxes[cls_name].append( [16 * x, 16 * y, 16 * (x + w), 16 * (y + h)]) probs[cls_name].append(np.max(P_cls[0, ii, :])) all_dets = [] album_ap = 0.0 logo_ap = 0.0 for key in bboxes: bbox = np.array(bboxes[key]) new_boxes, new_probs = roi_helpers.non_max_suppression_fast( bbox, np.array(probs[key]), overlap_thresh=0.5) for jk in range(new_boxes.shape[0]): (x1, y1, x2, y2) = new_boxes[jk, :] det = { 'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2, 'class': key, 'prob': new_probs[jk] } all_dets.append(det) # print('Elapsed time = {}'.format(time.time() - st)) t, p = get_map(all_dets, img_data['bboxes'], (fx, fy)) for key in t.keys(): if key not in T: T[key] = [] P[key] = [] T[key].extend(t[key]) P[key].extend(p[key]) all_aps = [] for key in T.keys(): ap = average_precision_score(T[key], P[key]) # print('{} AP: {}'.format(key, ap)) all_aps.append(ap) if idx == len(test_imgs) - 1: if key == 'album': album_ap = ap if key == 'logo': logo_ap = ap # print('mAP = {}'.format(np.mean(np.array(all_aps)))) if idx == len(test_imgs) - 1: mAP = np.mean(np.array(all_aps)) print('Elapsed time = {}'.format(time.time() - st)) print('album ap = {}'.format(album_ap)) print('logo ap = {}'.format(logo_ap)) print('mAP = {}'.format(mAP)) return [album_ap, logo_ap, mAP]
C.num_rois, nb_classes=len(class_mapping)) model_rpn = Model(img_input, rpn_layers) model_classifier = Model([feature_map_input, roi_input], classifier) # model loading print('Loading weights from {}'.format(options.load)) model_rpn.load_weights(options.load, by_name=True) model_classifier.load_weights(options.load, by_name=True) model_rpn.compile(optimizer='adam', loss='mse') model_classifier.compile(optimizer='adam', loss='mse') from keras_frcnn.simple_parser import get_data all_imgs, classes_count, class_mapping_2 = get_data(options.test_path, test_only=True) print(f'{len(all_imgs)} images to test.') with open('log/frcnn/frcnn_results.csv', 'w') as result_csv: log_writer = csv.writer(result_csv, delimiter=';') log_writer.writerow([ 'iou_threshold', 'precision', 'recall', 'f1_score', 'avg_precision', 'mean_distance', 'precision_b_small', 'precision_b_medium', 'precision_b_large', 'recall_b_small', 'recall_b_medium', 'recall_b_large', 'mean_distance_b_small', 'mean_distance_b_medium', 'mean_distance_b_high' ]) for iou_threshold_tp in [0.1, 0.2, 0.3, 0.4]: # Confusion Matrix initialization
def testModel(config_filename='config_ui.pickle'): st.markdown('## Starting validation of test data set') sys.setrecursionlimit(40000) config = tf.compat.v1.ConfigProto() config.gpu_options.allow_growth = True config.log_device_placement = True sess = tf.compat.v1.Session(config=config) K.set_session(sess) test_path = 'test' num_rois = 4 config_filename = config_filename network = 'resnet50' config_output_filename = config_filename with open(config_output_filename, 'rb') as f_in: C = pickle.load(f_in) if C.network == 'resnet50': import keras_frcnn.resnet as nn elif C.network == 'vgg': import keras_frcnn.vgg as nn # turn off any data augmentation at test time C.use_horizontal_flips = False C.use_vertical_flips = False C.rot_90 = False img_path = test_path class_mapping = C.class_mapping if 'bg' not in class_mapping: class_mapping['bg'] = len(class_mapping) class_mapping = {v: k for k, v in class_mapping.items()} st.write('Class Mapping', class_mapping) class_to_color = { class_mapping[v]: np.random.randint(0, 255, 3) for v in class_mapping } C.num_rois = int(num_rois) if C.network == 'resnet50': num_features = 1024 elif C.network == 'vgg': num_features = 512 if K.image_data_format() == 'channels_first': input_shape_img = (3, None, None) input_shape_features = (num_features, None, None) else: input_shape_img = (None, None, 3) input_shape_features = (None, None, num_features) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(C.num_rois, 4)) feature_map_input = Input(shape=input_shape_features) ## Defining Model # define the base network (resnet here, can be VGG, Inception, etc) shared_layers = nn.nn_base(img_input, trainable=True) # define the RPN, built on the base layers num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios) rpn_layers = nn.rpn(shared_layers, num_anchors) classifier = nn.classifier(feature_map_input, roi_input, C.num_rois, nb_classes=len(class_mapping), trainable=True) model_rpn = Model(img_input, rpn_layers) model_classifier_only = Model([feature_map_input, roi_input], classifier) model_classifier = Model([feature_map_input, roi_input], classifier) st.write(f'Loading weights from {C.model_path}') model_rpn.load_weights(C.model_path, by_name=True) model_classifier.load_weights(C.model_path, by_name=True) model_rpn.compile(optimizer='sgd', loss='mse') model_classifier.compile(optimizer='sgd', loss='mse') all_imgs = [] classes = {} ## few hyper parameters to select bbox bbox_threshold = 0.9 visualise = True set_Overlap_threshold = 0.1 progress_bar = st.progress(0.0) with st.spinner('Wait for sample test images...'): for idx, img_name in enumerate(sorted(os.listdir(img_path))): progress_bar.progress((idx + 0.1) / len(os.listdir(img_path))) if not img_name.lower().endswith( ('.bmp', '.jpeg', '.jpg', '.png', '.tif', '.tiff')): continue st.write(img_name) stTime = time.time() filepath = os.path.join(img_path, img_name) img = cv2.imread(filepath) X, ratio = format_img(img, C) if K.image_data_format() == 'channels_last': X = np.transpose(X, (0, 2, 3, 1)) # get the feature maps and output from the RPN [Y1, Y2, F] = model_rpn.predict(X) R = roi_helpers.rpn_to_roi(Y1, Y2, C, K.image_data_format(), overlap_thresh=0.7) #0.7 # convert from (x1,y1,x2,y2) to (x,y,w,h) R[:, 2] -= R[:, 0] R[:, 3] -= R[:, 1] # apply the spatial pyramid pooling to the proposed regions bboxes = {} probs = {} for jk in range(R.shape[0] // C.num_rois + 1): ROIs = np.expand_dims(R[C.num_rois * jk:C.num_rois * (jk + 1), :], axis=0) if ROIs.shape[1] == 0: print("ROI Shape: ", ROIs.shape[1]) break if jk == R.shape[0] // C.num_rois: #pad R curr_shape = ROIs.shape target_shape = (curr_shape[0], C.num_rois, curr_shape[2]) ROIs_padded = np.zeros(target_shape).astype(ROIs.dtype) ROIs_padded[:, :curr_shape[1], :] = ROIs ROIs_padded[0, curr_shape[1]:, :] = ROIs[0, 0, :] ROIs = ROIs_padded [P_cls, P_regr] = model_classifier_only.predict([F, ROIs]) for ii in range(P_cls.shape[1]): #print("np max:",np.max(P_cls[0, ii, :])) #print("np argmax:",np.argmax(P_cls[0, ii, :])) #print(np.max(P_cls[0, ii, :]) < bbox_threshold) if np.max(P_cls[0, ii, :]) < bbox_threshold or np.argmax( P_cls[0, ii, :]) == (P_cls.shape[2] - 1): continue cls_name = class_mapping[np.argmax(P_cls[0, ii, :])] #print('class name:',cls_name) if cls_name not in bboxes: bboxes[cls_name] = [] probs[cls_name] = [] (x, y, w, h) = ROIs[0, ii, :] cls_num = np.argmax(P_cls[0, ii, :]) try: (tx, ty, tw, th) = P_regr[0, ii, 4 * cls_num:4 * (cls_num + 1)] tx /= C.classifier_regr_std[0] ty /= C.classifier_regr_std[1] tw /= C.classifier_regr_std[2] th /= C.classifier_regr_std[3] x, y, w, h = roi_helpers.apply_regr( x, y, w, h, tx, ty, tw, th) except: pass bboxes[cls_name].append([ C.rpn_stride * x, C.rpn_stride * y, C.rpn_stride * (x + w), C.rpn_stride * (y + h) ]) probs[cls_name].append(np.max(P_cls[0, ii, :])) all_dets = [] for key in bboxes: bbox = np.array(bboxes[key]) new_boxes, new_probs = roi_helpers.non_max_suppression_fast( bbox, np.array(probs[key]), overlap_thresh=set_Overlap_threshold) for jk in range(new_boxes.shape[0]): (x1, y1, x2, y2) = new_boxes[jk, :] (real_x1, real_y1, real_x2, real_y2) = get_real_coordinates(ratio, x1, y1, x2, y2) cv2.rectangle(img, (real_x1, real_y1), (real_x2, real_y2), (int(class_to_color[key][0]), int(class_to_color[key][1]), int(class_to_color[key][2])), 2) textLabel = f'{key}: {int(100*new_probs[jk])}' all_dets.append((key, 100 * new_probs[jk])) (retval, baseLine) = cv2.getTextSize(textLabel, cv2.FONT_HERSHEY_COMPLEX, 1, 1) textOrg = (real_x1, real_y1 - 0) cv2.rectangle(img, (textOrg[0] - 5, textOrg[1] + baseLine - 5), (textOrg[0] + retval[0] + 5, textOrg[1] - retval[1] - 5), (0, 0, 0), 2) cv2.rectangle(img, (textOrg[0] - 5, textOrg[1] + baseLine - 5), (textOrg[0] + retval[0] + 5, textOrg[1] - retval[1] - 5), (255, 255, 255), -1) cv2.putText(img, textLabel, textOrg, cv2.FONT_HERSHEY_DUPLEX, 1, (0, 0, 0), 1) st.write(f'Elapsed time = {time.time() - stTime}') st.write(all_dets) plt.figure(figsize=(10, 10)) plt.grid() plt.imshow(cv2.cvtColor(img, cv2.COLOR_BGR2RGB)) #plt.show() st.image(img, use_column_width=True, clamp=True) #cv2.imwrite('./results_imgs-fp-mappen-test/{}.png'.format(os.path.splitext(str(img_name))[0]),img) from keras_frcnn.simple_parser import get_data test_path = 'test_annotationAlt.txt' # Test data (annotation file) startTime = time.time() test_imgs, classes_count, class_mapping = get_data(test_path) st.write('Spend %0.2f mins to load test data' % ((time.time() - startTime) / 60)) class_mapping = C.class_mapping class_mapping = {v: k for k, v in class_mapping.items()} st.write(class_mapping) class_to_color = { class_mapping[v]: np.random.randint(0, 255, 3) for v in class_mapping } from sklearn.metrics import average_precision_score set_Overlap_threshold = 0.1 T = {} P = {} mAPs = [] iou_map = [] progress_bar1 = st.progress(0.0) with st.spinner('Wait for test set evaluation...'): for idx, img_data in enumerate(test_imgs): progress_bar1.progress((idx + 0.1) / len(test_imgs)) st.write('{}/{}'.format(idx, len(test_imgs))) startTime = time.time() filepath = img_data['filepath'] img = cv2.imread(filepath) X, fx, fy = format_img_map(img, C) # Change X (img) shape from (1, channel, height, width) to (1, height, width, channel) X = np.transpose(X, (0, 2, 3, 1)) # get the feature maps and output from the RPN [Y1, Y2, F] = model_rpn.predict(X) R = rpn_to_roi(Y1, Y2, C, K.image_data_format(), overlap_thresh=0.7) # convert from (x1,y1,x2,y2) to (x,y,w,h) R[:, 2] -= R[:, 0] R[:, 3] -= R[:, 1] # apply the spatial pyramid pooling to the proposed regions bboxes = {} probs = {} for jk in range(R.shape[0] // C.num_rois + 1): ROIs = np.expand_dims(R[C.num_rois * jk:C.num_rois * (jk + 1), :], axis=0) if ROIs.shape[1] == 0: break if jk == R.shape[0] // C.num_rois: # pad R curr_shape = ROIs.shape target_shape = (curr_shape[0], C.num_rois, curr_shape[2]) ROIs_padded = np.zeros(target_shape).astype(ROIs.dtype) ROIs_padded[:, :curr_shape[1], :] = ROIs ROIs_padded[0, curr_shape[1]:, :] = ROIs[0, 0, :] ROIs = ROIs_padded [P_cls, P_regr] = model_classifier_only.predict([F, ROIs]) # Calculate all classes' bboxes coordinates on resized image (300, 400) # Drop 'bg' classes bboxes for ii in range(P_cls.shape[1]): # If class name is 'bg', continue if np.argmax(P_cls[0, ii, :]) == (P_cls.shape[2] - 1): continue # Get class name cls_name = class_mapping[np.argmax(P_cls[0, ii, :])] if cls_name not in bboxes: bboxes[cls_name] = [] probs[cls_name] = [] (x, y, w, h) = ROIs[0, ii, :] cls_num = np.argmax(P_cls[0, ii, :]) try: (tx, ty, tw, th) = P_regr[0, ii, 4 * cls_num:4 * (cls_num + 1)] tx /= C.classifier_regr_std[0] ty /= C.classifier_regr_std[1] tw /= C.classifier_regr_std[2] th /= C.classifier_regr_std[3] x, y, w, h = roi_helpers.apply_regr( x, y, w, h, tx, ty, tw, th) except: pass bboxes[cls_name].append( [16 * x, 16 * y, 16 * (x + w), 16 * (y + h)]) probs[cls_name].append(np.max(P_cls[0, ii, :])) all_dets = [] for key in bboxes: bbox = np.array(bboxes[key]) # Apply non-max-suppression on final bboxes to get the output bounding boxe new_boxes, new_probs = non_max_suppression_fast( bbox, np.array(probs[key]), overlap_thresh=set_Overlap_threshold) for jk in range(new_boxes.shape[0]): (x1, y1, x2, y2) = new_boxes[jk, :] det = { 'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2, 'class': key, 'prob': new_probs[jk] } all_dets.append(det) st.write('Elapsed time = {}'.format(time.time() - startTime)) t, p, iouVal = get_map(all_dets, img_data['bboxes'], (fx, fy)) for key in t.keys(): if key not in T: T[key] = [] P[key] = [] T[key].extend(t[key]) P[key].extend(p[key]) all_aps = [] for key in T.keys(): ap = average_precision_score(T[key], P[key]) st.write('{} AP: {}'.format(key, ap)) all_aps.append(ap) st.write('mAP = {}'.format(np.mean(np.array(all_aps)))) st.write('iou = {}'.format(np.mean(iouVal))) mAPs.append(np.mean(np.array(all_aps))) iou_map.append(iouVal) st.markdown('## Mean IOU:', Average(iou_map)) st.markdown('## Mean average precision:', np.mean(np.array(mAPs)))
def train_mscoco(): # ===========================模型的配置和加载====================================== # config for data argument cfg = config.Config() cfg.use_horizontal_flips = True cfg.use_vertical_flips = True cfg.rot_90 = True cfg.num_rois = 32 #resnet前四卷积部分的权值 cfg.base_net_weights = nn.get_weight_path() #保存模型的权重值 cfg.model_path = './model/mscoco_frcnn.hdf5' #all_images, class_mapping = get_data() #加载训练的图片 train_imgs, class_mapping = get_data('train') cfg.class_mapping = class_mapping print('Num classes (including bg) = {}'.format(len(class_mapping))) #保存所有的配置文件 with open(cfg.config_save_file, 'wb') as config_f: pickle.dump(cfg, config_f) print( 'Config has been written to {}, and can be loaded when testing to ensure correct results' .format(cfg.config_save_file)) #图片随机洗牌 random.shuffle(train_imgs) print('Num train samples {}'.format(len(train_imgs))) data_gen_train = data_generators.get_anchor_gt(train_imgs, class_mapping, cfg, nn.get_img_output_length, K.image_dim_ordering(), mode='train') # ============================================================================== # ===============================模型的定义====================================== #keras内核为tensorflow input_shape_img = (None, None, 3) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(None, 4)) # define the base resnet50 network shared_layers = nn.nn_base(img_input, trainable=False) # define the RPN, built on the base layers num_anchors = len(cfg.anchor_box_scales) * len(cfg.anchor_box_ratios) rpn = nn.rpn(shared_layers, num_anchors) classifier = nn.classifier(shared_layers, roi_input, cfg.num_rois, nb_classes=len(class_mapping), trainable=True) #model(input=,output=) model_rpn = Model(img_input, rpn[:2]) model_classifier = Model([img_input, roi_input], classifier) # this is a model that holds both the RPN and the classifier, used to load/save weights for the models model_all = Model([img_input, roi_input], rpn[:2] + classifier) # ============================================================================== # ===========================基本模型加载ImageNet权值============================= try: print('loading base model weights from {}'.format( cfg.base_net_weights)) model_rpn.load_weights(cfg.base_net_weights, by_name=True) model_classifier.load_weights(cfg.base_net_weights, by_name=True) except Exception as e: print('基本模型加载ImageNet权值: ', e) print('Could not load pretrained model weights on ImageNet.') # ============================================================================== # ===============================模型优化======================================== #在调用model.compile()之前初始化一个优化器对象,然后传入该函数 optimizer = Adam(lr=1e-5) optimizer_classifier = Adam(lr=1e-5) model_rpn.compile(optimizer=optimizer, loss=[ losses_fn.rpn_loss_cls(num_anchors), losses_fn.rpn_loss_regr(num_anchors) ]) model_classifier.compile( optimizer=optimizer_classifier, loss=[ losses_fn.class_loss_cls, losses_fn.class_loss_regr(len(class_mapping) - 1) ], metrics={'dense_class_{}'.format(len(class_mapping)): 'accuracy'}) model_all.compile(optimizer='sgd', loss='mae') # ============================================================================== # ================================训练、输出设置================================== epoch_length = len(train_imgs) num_epochs = int(cfg.num_epochs) iter_num = 0 losses = np.zeros((epoch_length, 5)) rpn_accuracy_rpn_monitor = [] rpn_accuracy_for_epoch = [] start_time = time.time() best_loss = np.Inf logger = Logger(os.path.join('.', 'log.txt')) # ============================================================================== print('Starting training') for epoch_num in range(num_epochs): progbar = generic_utils.Progbar(epoch_length) logger.write('Epoch {}/{}'.format(epoch_num + 1, num_epochs)) while True: try: if len(rpn_accuracy_rpn_monitor ) == epoch_length and cfg.verbose: mean_overlapping_bboxes = float( sum(rpn_accuracy_rpn_monitor)) / len( rpn_accuracy_rpn_monitor) rpn_accuracy_rpn_monitor = [] print( 'Average number of overlapping bounding boxes from RPN = {} for {} previous iterations' .format(mean_overlapping_bboxes, epoch_length)) if mean_overlapping_bboxes == 0: print( 'RPN is not producing bounding boxes that overlap' ' the ground truth boxes. Check RPN settings or keep training.' ) #图片,标准的cls、rgr,盒子数据 X, Y, img_data = next(data_gen_train) #训练rpn loss_rpn = model_rpn.train_on_batch(X, Y) #边训练rpn得到的区域送入roi #x_class, x_regr, base_layers P_rpn = model_rpn.predict_on_batch(X) result = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], cfg, K.image_dim_ordering(), use_regr=True, overlap_thresh=0.7, max_boxes=300) # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format #区域、cls、rgr、iou X2, Y1, Y2, IouS = roi_helpers.calc_iou( result, img_data, cfg, class_mapping) if X2 is None: rpn_accuracy_rpn_monitor.append(0) rpn_accuracy_for_epoch.append(0) continue neg_samples = np.where(Y1[0, :, -1] == 1) pos_samples = np.where(Y1[0, :, -1] == 0) if len(neg_samples) > 0: neg_samples = neg_samples[0] else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) if cfg.num_rois > 1: if len(pos_samples) < cfg.num_rois // 2: selected_pos_samples = pos_samples.tolist() else: selected_pos_samples = np.random.choice( pos_samples, cfg.num_rois // 2, replace=False).tolist() try: selected_neg_samples = np.random.choice( neg_samples, cfg.num_rois - len(selected_pos_samples), replace=False).tolist() except: selected_neg_samples = np.random.choice( neg_samples, cfg.num_rois - len(selected_pos_samples), replace=True).tolist() sel_samples = selected_pos_samples + selected_neg_samples else: # in the extreme case where num_rois = 1, we pick a random pos or neg sample selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) #训练classifier loss_class = model_classifier.train_on_batch( [X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]]) losses[iter_num, 0] = loss_rpn[1] losses[iter_num, 1] = loss_rpn[2] losses[iter_num, 2] = loss_class[1] losses[iter_num, 3] = loss_class[2] losses[iter_num, 4] = loss_class[3] iter_num += 1 progbar.update( iter_num, [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])), ('detector_cls', np.mean(losses[:iter_num, 2])), ('detector_regr', np.mean(losses[:iter_num, 3]))]) if iter_num == epoch_length: loss_rpn_cls = np.mean(losses[:, 0]) loss_rpn_regr = np.mean(losses[:, 1]) loss_class_cls = np.mean(losses[:, 2]) loss_class_regr = np.mean(losses[:, 3]) class_acc = np.mean(losses[:, 4]) mean_overlapping_bboxes = float(sum( rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] if cfg.verbose: logger.write( 'Mean number of bounding boxes from RPN overlapping ground truth boxes: {}' .format(mean_overlapping_bboxes)) logger.write( 'Classifier accuracy for bounding boxes from RPN: {}' .format(class_acc)) logger.write( 'Loss RPN classifier: {}'.format(loss_rpn_cls)) logger.write( 'Loss RPN regression: {}'.format(loss_rpn_regr)) logger.write('Loss Detector classifier: {}'.format( loss_class_cls)) logger.write('Loss Detector regression: {}'.format( loss_class_regr)) logger.write('Elapsed time: {}'.format(time.time() - start_time)) curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr iter_num = 0 start_time = time.time() if curr_loss < best_loss: if cfg.verbose: logger.write( 'Total loss decreased from {} to {}, saving weights' .format(best_loss, curr_loss)) best_loss = curr_loss model_all.save_weights(cfg.model_path) break except Exception as e: print('Exception: {}'.format(e)) # save model model_all.save_weights(cfg.model_path) continue print('Training complete, exiting.')
# model loading C.model_path = options.load print('Loading weights from {}'.format(C.model_path)) model_rpn.load_weights(C.model_path, by_name=True) optimizer = Adam(lr=1e-3, clipnorm=0.001) model_rpn.compile(optimizer=optimizer, loss=[ loss_func.rpn_loss_cls(num_anchors), loss_func.rpn_loss_regr(num_anchors) ]) #### load images here #### from keras_frcnn.simple_parser import get_data all_imgs, classes_count, class_mapping = get_data(options.test_path, test_only=False) train_imgs = [s for s in all_imgs if s['imageset'] == 'train'] data_gen_val = data_generators.get_anchor_gt(train_imgs, classes_count, C, nn.get_img_output_length, K.common.image_dim_ordering(), mode='val') with open('log/losses.csv', 'w') as log: log_writer = csv.writer(log, delimiter=';') log_writer.writerow(['loss', 'loss_rpn_cls', 'loss_rpn_regr', 'img']) for img in train_imgs: X_gen, Y_gen, imgdata = next(data_gen_val)
def train_net(): # config for data argument cfg = config.Config() cfg.use_horizontal_flips = False cfg.use_vertical_flips = False cfg.rot_90 = False cfg.num_rois = 32 # config中设置的是4 cfg.base_net_weights = os.path.join('./model/', nn.get_weight_path()) # TODO: the only file should to be change for other data to train cfg.model_path = 'samples.hdf5' cfg.simple_label_file = 'annotations_train.txt' # 训练集产生的标签 all_images, classes_count, class_mapping = get_data(cfg.simple_label_file) if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) cfg.class_mapping = class_mapping with open(cfg.config_save_file, 'wb') as config_f: pickle.dump(cfg, config_f) print('Config has been written to {}, and can be loaded when testing to ensure correct results'.format( cfg.config_save_file)) inv_map = {v: k for k, v in class_mapping.items()} print('Training images per class:') pprint.pprint(classes_count) print('Num classes (including bg) = {}'.format(len(classes_count))) random.shuffle(all_images) num_imgs = len(all_images) train_imgs = [s for s in all_images if s['imageset'] == 'trainval'] val_imgs = [s for s in all_images if s['imageset'] == 'test'] print('Num train samples {}'.format(len(train_imgs))) print('Num val samples {}'.format(len(val_imgs))) # there图片 data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, cfg, nn.get_img_output_length, K.image_dim_ordering(), mode='train') data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, cfg, nn.get_img_output_length, K.image_dim_ordering(), mode='val') if K.image_dim_ordering() == 'th': input_shape_img = (3, None, None) else: input_shape_img = (None, None, 3) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(None, 4)) # define the base network (resnet here, can be VGG, Inception, etc) shared_layers = nn.nn_base(img_input, trainable=True) # define the RPN, built on the base layers num_anchors = len(cfg.anchor_box_scales) * len(cfg.anchor_box_ratios) rpn = nn.rpn(shared_layers, num_anchors) # classifier是什么? # classes_count {} 每一个类的数量:{'cow': 4, 'dog': 10, ...} # C.num_rois每次取的感兴趣区域,默认为32 # roi_input = Input(shape=(None, 4)) 框框 # classifier是faster rcnn的两个损失函数[out_class, out_reg] # shared_layers是vgg的输出feature map classifier = nn.classifier(shared_layers, roi_input, cfg.num_rois, nb_classes=len(classes_count), trainable=True) # 定义model_rpn model_rpn = Model(img_input, rpn[:2]) model_classifier = Model([img_input, roi_input], classifier) # this is a model that holds both the RPN and the classifier, used to load/save weights for the models model_all = Model([img_input, roi_input], rpn[:2] + classifier) try: print('loading weights from {}'.format(cfg.base_net_weights)) model_rpn.load_weights(cfg.model_path, by_name=True) model_classifier.load_weights(cfg.model_path, by_name=True) except Exception as e: print(e) print('Could not load pretrained model weights. Weights can be found in the keras application folder ' 'https://github.com/fchollet/keras/tree/master/keras/applications') optimizer = Adam(lr=1e-5) optimizer_classifier = Adam(lr=1e-5) model_rpn.compile(optimizer=optimizer, loss=[losses_fn.rpn_loss_cls(num_anchors), losses_fn.rpn_loss_regr(num_anchors)]) model_classifier.compile(optimizer=optimizer_classifier, loss=[losses_fn.class_loss_cls, losses_fn.class_loss_regr(len(classes_count) - 1)], metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'}) model_all.compile(optimizer='sgd', loss='mae') epoch_length = 10 num_epochs = int(cfg.num_epochs) iter_num = 0 losses = np.zeros((epoch_length, 5)) rpn_accuracy_rpn_monitor = [] rpn_accuracy_for_epoch = [] start_time = time.time() best_loss = np.Inf class_mapping_inv = {v: k for k, v in class_mapping.items()} print('Starting training') vis = True for epoch_num in range(num_epochs): progbar = generic_utils.Progbar(epoch_length) print('Epoch {}/{}'.format(epoch_num + 1, num_epochs)) while True: try: # 用来监督每一次epoch的平均正回归框的个数 if len(rpn_accuracy_rpn_monitor) == epoch_length and cfg.verbose: mean_overlapping_bboxes = float(sum(rpn_accuracy_rpn_monitor)) / len(rpn_accuracy_rpn_monitor) rpn_accuracy_rpn_monitor = [] print( 'Average number of overlapping bounding boxes from RPN = {} for {} previous iterations'.format( mean_overlapping_bboxes, epoch_length)) if mean_overlapping_bboxes == 0: # 每次都框不到正样本,说明rpn有问题 print('RPN is not producing bounding boxes that overlap' ' the ground truth boxes. Check RPN settings or keep training.') # 迭代器,取数据 # 训练rpn网络,X是图片,Y是对应类别和回归梯度(不是所有的点都参加训练,符合条件才参加训练) # next(data_gen_train)是一个迭代器。 # 返回的是 np.copy(x_img), [np.copy(y_rpn_cls), np.copy(y_rpn_regr)], # img_data_aug(我们这里假设数据没有进行水平翻转等操作。那么,x_img = img_data_aug), # y_rpn_cls和y_rpn_regr是RPN的两个损失函数。 X, Y, img_data = next(data_gen_train) # classifer和rpn网络交叉训练 loss_rpn = model_rpn.train_on_batch(X, Y) P_rpn = model_rpn.predict_on_batch(X) # result是得到的预选框 # 得到了region proposals,接下来另一个重要的思想就是ROI pooling, # 可将不同shape的特征图转化为固定shape,送到全连接层进行最终的预测。 # rpn_to_roi接收的是每张图片的预测输出,返回的R = [boxes, probs] # --------------------- result = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], cfg, K.image_dim_ordering(), use_regr=True, overlap_thresh=0.7, max_boxes=300) # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format # Y1根据预选框,得到这个预选框属于哪一类, # Y2这个类相应的回归梯度 # X2是返回这个框 """ # 通过calc_iou()找出剩下的不多的region对应ground truth里重合度最高的bbox,从而获得model_classifier的数据和标签。 # X2保留所有的背景和match bbox的框; Y1 是类别one-hot转码; Y2是对应类别的标签及回归要学习的坐标位置; IouS是debug用的。 """ X2, Y1, Y2, IouS = roi_helpers.calc_iou(result, img_data, cfg, class_mapping) if X2 is None: # 如果没有有效的预选框则结束本次循环 rpn_accuracy_rpn_monitor.append(0) rpn_accuracy_for_epoch.append(0) continue # 因为是one—hot,最后一位是1,则代表是背景 neg_samples = np.where(Y1[0, :, -1] == 1) pos_samples = np.where(Y1[0, :, -1] == 0) if len(neg_samples) > 0: neg_samples = neg_samples[0] # 将其变为1维的数组 else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) if cfg.num_rois > 1: # 选择num_rois个数的框,送入classifier网络进行训练。 分类网络一次要训练多少个框 # 思路:当num_rois大于1的时候正负样本尽量取到一半,小于1的时候正负样本随机取一个。 if len(pos_samples) < cfg.num_rois // 2: # 挑选正样本 selected_pos_samples = pos_samples.tolist() else: selected_pos_samples = np.random.choice(pos_samples, cfg.num_rois // 2, replace=False).tolist() try: # 挑选负样本 selected_neg_samples = np.random.choice(neg_samples, cfg.num_rois - len(selected_pos_samples), replace=False).tolist() except: selected_neg_samples = np.random.choice(neg_samples, cfg.num_rois - len(selected_pos_samples), replace=True).tolist() sel_samples = selected_pos_samples + selected_neg_samples else: # in the extreme case where num_rois = 1, we pick a random pos or neg sample selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) # 训练classifier网络 # 是从位置中挑选, loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]]) # losses[iter_num, 0] = loss_rpn[1] # rpn_cls平均值 losses[iter_num, 1] = loss_rpn[2] # rpn_regr平均值 losses[iter_num, 2] = loss_class[1] # detector_cls平均值 losses[iter_num, 3] = loss_class[2] # detector_regr平均值 losses[iter_num, 4] = loss_class[3] # 4是准确率 iter_num += 1 # 进度条更新 progbar.update(iter_num, [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])), ('detector_cls', np.mean(losses[:iter_num, 2])), ('detector_regr', np.mean(losses[:iter_num, 3]))]) if iter_num == epoch_length: loss_rpn_cls = np.mean(losses[:, 0]) # loss中存放了每一次训练出的losses loss_rpn_regr = np.mean(losses[:, 1]) loss_class_cls = np.mean(losses[:, 2]) loss_class_regr = np.mean(losses[:, 3]) class_acc = np.mean(losses[:, 4]) mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] if cfg.verbose: # 打印出前n次loss的平均值 print('Mean number of bounding boxes from RPN overlapping ground truth boxes: {}'.format( mean_overlapping_bboxes)) print('Classifier accuracy for bounding boxes from RPN: {}'.format(class_acc)) print('Loss RPN classifier: {}'.format(loss_rpn_cls)) print('Loss RPN regression: {}'.format(loss_rpn_regr)) print('Loss Detector classifier: {}'.format(loss_class_cls)) print('Loss Detector regression: {}'.format(loss_class_regr)) print('Elapsed time: {}'.format(time.time() - start_time)) curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr iter_num = 0 start_time = time.time() if curr_loss < best_loss: # 当结束一轮的epoch时,只有当这轮epoch的loss小于最优的时候才会存储这轮的训练数据, # 并结束这轮epoch进入下一轮epoch。 if cfg.verbose: print('Total loss decreased from {} to {}, saving weights'.format(best_loss, curr_loss)) best_loss = curr_loss model_all.save_weights(cfg.model_path) break except Exception as e: print('Exception: {}'.format(e)) # save model model_all.save_weights(cfg.model_path) continue print('Training complete, exiting.')
model_rpn = Model(img_input, rpn_layers) model_classifier_only = Model([feature_map_input, roi_input], classifier) model_classifier = Model([feature_map_input, roi_input], classifier) print('Loading weights from {}'.format( C.model_path)) # model_path specified in config file model_rpn.load_weights(C.model_path, by_name=True) model_classifier.load_weights(C.model_path, by_name=True) model_rpn.compile(optimizer='sgd', loss='mse') model_classifier.compile(optimizer='sgd', loss='mse') all_imgs = [] classes = {} all_imgs, _, _ = get_data(options.test_path) #test_imgs = [s for s in all_imgs if s['imageset'] == 'train'] # mAP print("DEBUGGING 218: test imgs: ", len(test_imgs)) classification_threshold = 0.8 # threshold above which we classify as positive # for mAP T, P = {}, {} counter = 0 for idx, img_data in enumerate(test_imgs): print('{}/{}'.format(idx, len(test_imgs))) img_name = img_data['filepath'].split('/')[-1] print("DEBUGGING 232 img_name:", img_name) print("img {}: {}".format(str(counter), img_name)) counter += 1 start_time = time.time()
def build_and_train(hype_space, save_best_weights=False): train_path = '/home/comp/e4252392/retraindata4frcnn.txt' config_output_filename = '/home/comp/e4252392/hyperopt/hyperopt_config.pickle' num_epochs = 20 #for retrain best model only diagnose_path = '/home/comp/e4252392/hyperopt/models/hyperopt_loss_ap_plt.npy' real_model_path = '/home/comp/e4252392/hyperopt/models/hyperopt_model_plt_' print("Hyperspace:") print(hype_space) C = config.Config() C.num_rois = int(hype_space['num_rois']) #why int? # C.anchor_box_scales = hype_space['anchor_box_scales'] # C.base_net_weights = '/home/comp/e4252392/second_res_more_epoch.h5' C.base_net_weights = 'model_frcnn.hdf5' #data all_imgs, classes_count, class_mapping = get_data(train_path) if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) C.class_mapping = class_mapping print('Training images per class:') pprint.pprint(classes_count) print('Num classes (including bg) = {}'.format(len(classes_count))) with open(config_output_filename, 'wb') as config_f: pickle.dump(C, config_f) print( 'Config has been written to {}, and can be loaded when testing to ensure correct results' .format(config_output_filename)) random.shuffle(all_imgs) num_imgs = len(all_imgs) train_imgs = [s for s in all_imgs] print('Num train samples {}'.format(len(train_imgs))) data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, C, nn.get_img_output_length, K.image_dim_ordering(), mode='train') #data # build_model if K.image_dim_ordering() == 'th': input_shape_img = (3, None, None) else: input_shape_img = (None, None, 3) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(None, 4)) shared_layers = nn.nn_base(int(hype_space['kernel_size']), img_input, trainable=True) num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios) rpn = nn.rpn(int(hype_space['kernel_size']), shared_layers, num_anchors) classifier = nn.classifier(int(hype_space['kernel_size']), shared_layers, roi_input, C.num_rois, nb_classes=len(classes_count), trainable=True) model_rpn = Model(img_input, rpn[:2]) model_classifier = Model([img_input, roi_input], classifier) model_all = Model([img_input, roi_input], rpn[:2] + classifier) try: print('loading weights from {}'.format(C.base_net_weights)) model_rpn.load_weights(C.base_net_weights, by_name=True) model_classifier.load_weights(C.base_net_weights, by_name=True) except: print( 'Could not load pretrained model weights. Weights can be found in the keras application folder \ https://github.com/fchollet/keras/tree/master/keras/applications') # optimizer = Adam(lr=1e-5) # optimizer_classifier = Adam(lr=1e-5) optimizer = Adam(lr=hype_space['optimizer_lr'], decay=hype_space['optimizer_decay']) optimizer_classifier = Adam(lr=hype_space['optimizer_lr'], decay=hype_space['optimizer_decay']) model_rpn.compile(optimizer=optimizer, loss=[ thelosses.rpn_loss_cls(num_anchors), thelosses.rpn_loss_regr(num_anchors) ]) model_classifier.compile( optimizer=optimizer_classifier, loss=[ thelosses.class_loss_cls, thelosses.class_loss_regr(len(classes_count) - 1) ], metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'}) sgd = SGD(lr=hype_space['sgd_lr'], decay=hype_space['sgd_decay']) model_all.compile(optimizer=sgd, loss='mae') # build_model #build_and_train epoch_length = 10 iter_num = 0 losses = np.zeros((epoch_length, 5)) rpn_accuracy_rpn_monitor = [] rpn_accuracy_for_epoch = [] start_time = time.time() best_loss = np.Inf print('Starting training') loss_array = [] ap_array = [] epoch_array = [] epoch_array.append(0) result = {} model_name = '' for epoch_num in range(num_epochs): progbar = generic_utils.Progbar(epoch_length) print('Epoch {}/{}'.format(epoch_num + 1, num_epochs)) while True: try: if len(rpn_accuracy_rpn_monitor) == epoch_length and C.verbose: mean_overlapping_bboxes = float( sum(rpn_accuracy_rpn_monitor)) / len( rpn_accuracy_rpn_monitor) rpn_accuracy_rpn_monitor = [] print( 'Average number of overlapping bounding boxes from RPN = {} for {} previous iterations' .format(mean_overlapping_bboxes, epoch_length)) if mean_overlapping_bboxes == 0: print( 'RPN is not producing bounding boxes that overlap the ground truth boxes. Check RPN settings or keep training.' ) # train X, Y, img_data = next(data_gen_train) loss_rpn = model_rpn.train_on_batch(X, Y) P_rpn = model_rpn.predict_on_batch(X) R = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], C, K.image_dim_ordering(), use_regr=True, overlap_thresh=0.7, max_boxes=300) X2, Y1, Y2, IouS = roi_helpers.calc_iou( R, img_data, C, class_mapping) if X2 is None: rpn_accuracy_rpn_monitor.append(0) rpn_accuracy_for_epoch.append(0) continue neg_samples = np.where(Y1[0, :, -1] == 1) pos_samples = np.where(Y1[0, :, -1] == 0) if len(neg_samples) > 0: neg_samples = neg_samples[0] else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) if C.num_rois > 1: if len(pos_samples) < C.num_rois // 2: selected_pos_samples = pos_samples.tolist() else: selected_pos_samples = np.random.choice( pos_samples, C.num_rois // 2, replace=False).tolist() try: selected_neg_samples = np.random.choice( neg_samples, C.num_rois - len(selected_pos_samples), replace=False).tolist() except: selected_neg_samples = np.random.choice( neg_samples, C.num_rois - len(selected_pos_samples), replace=True).tolist() sel_samples = selected_pos_samples + selected_neg_samples else: selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) loss_class = model_classifier.train_on_batch( [X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]]) # train losses[iter_num, 0] = loss_rpn[1] losses[iter_num, 1] = loss_rpn[2] losses[iter_num, 2] = loss_class[1] losses[iter_num, 3] = loss_class[2] losses[iter_num, 4] = loss_class[3] iter_num += 1 progbar.update( iter_num, [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])), ('detector_cls', np.mean(losses[:iter_num, 2])), ('detector_regr', np.mean(losses[:iter_num, 3]))]) if iter_num == epoch_length: loss_rpn_cls = np.mean(losses[:, 0]) loss_rpn_regr = np.mean(losses[:, 1]) loss_class_cls = np.mean(losses[:, 2]) loss_class_regr = np.mean(losses[:, 3]) class_acc = np.mean(losses[:, 4]) mean_overlapping_bboxes = float(sum( rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] if C.verbose: print( 'Mean number of bounding boxes from RPN overlapping ground truth boxes: {}' .format(mean_overlapping_bboxes)) print( 'Classifier accuracy for bounding boxes from RPN: {}' .format(class_acc)) print('Loss RPN classifier: {}'.format(loss_rpn_cls)) print('Loss RPN regression: {}'.format(loss_rpn_regr)) print('Loss Detector classifier: {}'.format( loss_class_cls)) print('Loss Detector regression: {}'.format( loss_class_regr)) print('Elapsed time: {}'.format(time.time() - start_time)) # result curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr iter_num = 0 start_time = time.time() if curr_loss < best_loss: if C.verbose: print( 'Total loss decreased from {} to {}, saving weights' .format(best_loss, curr_loss)) best_loss = curr_loss if save_best_weights: real_model_path = real_model_path + str( epoch_num + 1) + '.hdf5' model_all.save_weights(real_model_path, overwrite=True) print("Best weights so far saved to " + real_model_path + ". best_loss = " + str(best_loss)) epoch_array.append(epoch_num + 1) loss_array.append([ loss_rpn_cls, loss_rpn_regr, loss_class_cls, loss_class_regr, best_loss ]) album_ap, logo_ap, mAP = measure_map.measure_map( config_output_filename, real_model_path) ap_array.append([album_ap, logo_ap, mAP]) np.save(diagnose_path, [epoch_array, loss_array, ap_array]) else: album_ap = 'not applicable' logo_ap = 'not applicable' mAP = 'not applicable' model_name = "model_{}_{}".format( str(best_loss), str(uuid.uuid4())[:5]) result = { 'loss': best_loss, 'loss_rpn_cls': loss_rpn_cls, 'loss_rpn_regr': loss_rpn_regr, 'loss_class_cls': loss_class_cls, 'loss_class_regr': loss_class_regr, 'album_ap': album_ap, 'logo_ap': logo_ap, 'mAP': mAP, 'model_name': model_name, 'space': hype_space, 'status': STATUS_OK } print("RESULT UPDATED.") print("Model name: {}".format(model_name)) # result break except Exception as e: print('Exception: {}'.format(e)) continue print('Training complete, exiting.') print("BEST MODEL: {}".format(model_name)) print("FINAL RESULT:") print_json(result) save_json_result(model_name, result) try: K.clear_session() del model_all, model_rpn, model_classifier except Exception as err: try: K.clear_session() except: pass err_str = str(err) print(err_str) traceback_str = str(traceback.format_exc()) print(traceback_str) return { 'status': STATUS_FAIL, 'err': err_str, 'traceback': traceback_str } print("\n\n") return model_name, result
C = config.Config() C.num_rois = 6 C.use_vertical_flips = True C.use_horizontal_flips = True C.scale_augment = True C.rot_90 = True C.balanced_classes = False C2 = config.Config() C2.num_rois = 6 #from keras_frcnn.pascal_voc_parser import get_data from keras_frcnn.simple_parser import get_data all_imgs, classes_count, class_mapping = get_data('C:/Fraps/im2txt.txt') if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) with open('classes.json', 'w') as class_data_json: json.dump(class_mapping, class_data_json) inv_map = {v: k for k, v in class_mapping.items()} #pprint.pprint(classes_count) print(('Num classes (including bg) = {}'.format(len(classes_count)))) random.shuffle(all_imgs) num_imgs = len(all_imgs)
def Train_frcnn( train_path='./data/flickr_logos_27_dataset_training_set_annotation.txt', # path to the text file containing the data network_arch='vgg', # the type of the base faster rcnn network architecture num_epochs=50, # num of epochs output_weight_path='./models/model_frcnn.hdf5', # path to save the model_all.weights as hdf5 preprocessing_function=None, config_filename="config.pickle", input_weights_path='./models/vgg16_weights_tf_dim_ordering_tf_kernels.h5', train_rpn=True, train_final_classifier=True, train_base_nn=True, losses_to_watch=['rpn_cls', 'rpn_reg', 'final_cls', 'final_reg'], tb_log_dir="log", num_rois=32, horizontal_flips=False, vertical_flips=False, rot_90=False, anchor_box_scales=[128, 256, 512], anchor_box_ratios=[[1, 1], [1. / math.sqrt(2), 2. / math.sqrt(2)], [2. / math.sqrt(2), 1. / math.sqrt(2)]], im_size=600, rpn_stride=16, # depends on network architecture visualize_model=None, verify_trainable=True, optimizer_rpn=Adam(lr=1e-5), optimizer_classifier=Adam(lr=1e-5), validation_interval=3, rpn_min_overlap=0.3, rpn_max_overlap=0.7, classifier_min_overlap=0.1, classifier_max_overlap=0.5, rpn_nms_threshold=0.7, # original implementation seed=5000): """ Trains a Faster RCNN for object detection in keras NOTE: This trains 2 models namely model_rpn and model_classifer with the same shared base_nn (fixed feature extractor) Keyword Arguments train_path -- str: path to the text file or pascal_voc (no Default) network_arch --object: the full faster rcnn network .py file passed as an object (no default) num_epochs -- int: number of epochs to train (no Default) output_weight_path --str: path to save the frcnn weights (no Default) preprocessing_function --function: Optional preprocessing function (must be defined like given in keras docs) (Default None) config_filename --str: Path to save the config file. Used when testing (Default "config.pickle") input_weight_path --str: Path to hdf5 file containing weights for the model (Default None) you can pass path to both classification and detection checkpoints as long as the names dont' change train_rpn --bool: whether to train the rpn layer (Default True) train_final_classifier --bool:Whether to train the final_classifier (Fast Rcnn layer) (Default True) train_base_nn --bool:Whether to train the base_nn/fixed_feature_extractor (Default True) losses_to_watch --list: A list of losses to watch (Default ['rpn_cls','rpn_reg','final_cls','final_reg']). The losses in this list are added and then weights are saved wrt to that. The list can contain any combination of the above 4 only. tb_log_dir --str: path to log dir for tensorboard logging (Default 'log') num_rois --int: The number of rois to use at once (Default = 32) horizontal_flips --bool: augment training data by horizontal flips (Default False) vertical_flips --bool: augment training data by vertical flips (Default False) rot_90 --bool: augment training data by 90 deg rotations (Default False) anchor_box_scales --list: The list of anchor box scales to use (Default [128,256,512]) anchor_box ratios --list of list: The list of anchorbox aspect ratios to use (Default [[1, 1], [1./math.sqrt(2), 2./math.sqrt(2)], [2./math.sqrt(2), 1./math.sqrt(2)]]) im_size --int: The size to resize the image (Default 600). This is the smallest side of Pascal VOC format rpn_stride --int: The stride for rpn (Default = 16) visualize_model --str: Path to save the model as .png file verify_trainable --bool: print layer wise names and prints if it is trainable or not (Default True) optimizer_rpn --keras.optimizer: The optimizer for rpn (Default Adam(lr=1e-5)) optimizer_classifier --keras.optimizer: The optimizer for classifier (Default Adam(lr=1e-5)) validation_interval --int: The frequency (in epochs) to do validation. supply 0 if no validation rpn_min_overlap --float: (0,1) The Min IOU in rpn layer (Default 0.3) (original implementation) rpn_max_overlap --float: (0,1) The max IOU in rpn layer (Default 0.7) (original implementation) classifier_min_overlap --float: (0,1) same as above but in final classifier (Default 0.1) (original implementation) classifier_max_overlap --float: (0,1) same as above (Default 0.5) (original implementation) rpn_nms_threshold --float :(0,1) The threshold above which to supress the bbox using Non max supression in rpn (Default 0.7)(from original implementation) seed --int: To seed the random shuffling of training data (Default = 5000) Performing alternating training: - Use the train_rpn,train_final_classifier and train_base_nn boolean arguments to accomplish alternating training. - While using the above arguments change the members of losses_to_watch = ['rpn_cls','rpn_reg','final_cls','final_reg'] accordingly else it will throw error - for eg if you are training only the base_nn and the rpn set: train_rpn = True train_base_nn = True train_final_classifier = False losses_to_watch = ['rpn_cls','rpn_reg'] (do not include 'final_cls', 'final_reg') OUTPUT: prints the training log. Does not return anything Save details: 1.saves the weights of the full FRCNN model as .h5 2.saves a tensorboard file 3.saves the history of weights saved in ./saving_log.txt so that it can be known at which epoch the model is saved 4.saves the model configuration as a .pickle file 5.optionally saves the full FRCNN architecture as .png NOTE: as of now the batch size = 1 Prints loss = 0 for losses from model which is not being trained TODO: The training is a bit slow because of the data generation step. Generate_data in multiple threads and queue them for faster training """ check_list = ['rpn_cls', 'rpn_reg', 'final_cls', 'final_reg'] for n in losses_to_watch: if n not in check_list: raise ValueError( "unsupported loss the supported losses are: {}".format( check_list)) if not train_rpn: if "rpn_cls" in losses_to_watch or "rpn_reg" in losses_to_watch: raise ValueError( "Cannot watch rpn_cls and rpn_reg when train_rpn == False") if not train_final_classifier: if "final_cls" in losses_to_watch or "final_reg" in losses_to_watch: raise ValueError( "cannot watch final_cls and final_reg when train_final_classifier == False" ) if network_arch == 'vgg': from keras_frcnn import nn_arch_vgg16 as nn elif network_arch == 'resnet50': from keras_frcnn import nn_arch_resnet50 as nn else: print('Not a valid model') raise ValueError random.seed(seed) np.random.seed(seed) # pass the settings from the function call, and persist them in the config object C = config.Config() C.rpn_max_overlap = rpn_max_overlap C.rpn_min_overlap = rpn_min_overlap C.classifier_min_overlap = classifier_min_overlap C.classifier_max_overlap = classifier_max_overlap C.anchor_box_scales = anchor_box_scales C.anchor_box_ratios = anchor_box_ratios C.im_size = im_size C.use_horizontal_flips = bool(horizontal_flips) C.use_vertical_flips = bool(vertical_flips) C.rot_90 = bool(rot_90) C.rpn_stride = rpn_stride C.rpn_nms_threshold = rpn_nms_threshold C.weights_all_path = output_weight_path C.num_rois = int(num_rois) # check if weight path was passed via command line if input_weights_path: C.initial_weights = input_weights_path all_imgs, classes_count, class_mapping = get_data(train_path) print("The class mapping is:") print(class_mapping) if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) C.class_mapping = class_mapping print('Training images per class:') pprint.pprint(classes_count) print('Num classes (including bg) = {}'.format(len(classes_count))) with open(config_filename, 'wb') as config_f: pickle.dump(C, config_f) print( 'Config has been written to {}, and can be loaded when testing to ensure correct results' .format(config_filename)) np.random.shuffle(all_imgs) train_imgs = [s for s in all_imgs if s['imageset'] == 'train'] val_imgs = [s for s in all_imgs if s['imageset'] == 'test'] print('Num train samples {}'.format(len(train_imgs))) print('Num val samples {}'.format(len(val_imgs))) input_shape_img = (None, None, 3) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(None, 4)) # define the base network (resnet here, can be VGG, Inception, etc) shared_layers = nn.nn_base(img_input, trainable=train_base_nn) # define the RPN, built on the base layers num_anchors = len(C.anchor_box_scales) * len(C.anchor_box_ratios) rpn = nn.rpn(shared_layers, num_anchors, trainable=train_rpn) # define the classifier, built on base layers classifier = nn.classifier(shared_layers, roi_input, C.num_rois, len(classes_count), trainable=train_final_classifier) # create models model_base = Model(img_input, shared_layers) # for computing the output shape model_rpn = Model(img_input, rpn[:2]) # used for training model_classifier = Model([img_input, roi_input], classifier) # used for training # this is a model that holds both the RPN and the classifier, used to load/save and freeze/unfreeze weights for the models model_all = Model([img_input, roi_input], rpn[:2] + classifier) # tensorboard tbCallBack = TensorBoard(log_dir=tb_log_dir, histogram_freq=1, write_graph=False, write_images=False) tbCallBack.set_model(model_all) #NOTE: both model_rpn and model_classifer contains the base_nn try: print('loading weights from {}'.format(C.initial_weights)) model_all.load_weights(C.initial_weights, by_name=True) except: print('Could not load pretrained model weights') # number of trainable parameters trainable_count = int( np.sum([K.count_params(p) for p in set(model_all.trainable_weights)])) non_trainable_count = int( np.sum( [K.count_params(p) for p in set(model_all.non_trainable_weights)])) print('Total params: {:,}'.format(trainable_count + non_trainable_count)) print('Trainable params: {:,}'.format(trainable_count)) print('Non-trainable params: {:,}'.format(non_trainable_count)) if verify_trainable: for layer in model_all.layers: print(layer.name, layer.trainable) model_rpn.compile(optimizer=optimizer_rpn, loss=[ Losses.rpn_loss_cls(num_anchors), Losses.rpn_loss_regr(num_anchors) ]) model_classifier.compile( optimizer=optimizer_classifier, loss=[ Losses.class_loss_cls, Losses.class_loss_regr(len(classes_count) - 1) ], metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'}) model_all.compile(optimizer='sgd', loss='mse') # save model_all as png for visualization if visualize_model != None: # from IPython.display import SVG # from keras.utils.vis_utils import model_to_dot # SVG(model_to_dot(model_all).create(prog='dot', format='svg')) plot_model(model=model_all, to_file=visualize_model, show_shapes=True, show_layer_names=True) epoch_length = len(train_imgs) validation_epoch_length = len(val_imgs) num_epochs = int(num_epochs) iter_num = 0 # train and valid data generator data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, C, model_base, K.image_dim_ordering(), preprocessing_function, mode='train') data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, C, model_base, K.image_dim_ordering(), preprocessing_function, mode='val') losses_val = np.zeros((validation_epoch_length, 5)) losses = np.zeros((epoch_length, 5)) rpn_accuracy_rpn_monitor = [] rpn_accuracy_for_epoch = [] start_time = time.time() best_loss = np.Inf val_best_loss = np.Inf val_best_loss_epoch = 0 print('Starting training') def write_log(callback, names, logs, batch_no): for name, value in zip(names, logs): summary = tf.Summary() summary_value = summary.value.add() summary_value.simple_value = value summary_value.tag = name callback.writer.add_summary(summary, batch_no) callback.writer.flush() train_names = [ 'train_loss_rpn_cls', 'train_loss_rpn_reg', 'train_loss_class_cls', 'train_loss_class_reg', 'train_total_loss', 'train_acc' ] val_names = [ 'val_loss_rpn_cls', 'val_loss_rpn_reg', 'val_loss_class_cls', 'val_loss_class_reg', 'val_total_loss', 'val_acc' ] for epoch_num in range(num_epochs): progbar = generic_utils.Progbar(epoch_length) print('Epoch {}/{}'.format(epoch_num + 1, num_epochs)) while True: try: if len(rpn_accuracy_rpn_monitor) == epoch_length and C.verbose: mean_overlapping_bboxes = float( sum(rpn_accuracy_rpn_monitor)) / len( rpn_accuracy_rpn_monitor) rpn_accuracy_rpn_monitor = [] print( 'Average number of overlapping bounding boxes from RPN = {} for {} previous iterations' .format(mean_overlapping_bboxes, epoch_length)) if mean_overlapping_bboxes == 0: print( 'RPN is not producing bounding boxes that overlap the ground truth boxes. Check RPN settings or keep training.' ) X, Y, img_data = next(data_gen_train) if train_rpn: loss_rpn = model_rpn.train_on_batch(X, Y) P_rpn = model_rpn.predict_on_batch(X) R = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], C, K.image_dim_ordering(), use_regr=True, overlap_thresh=C.rpn_nms_threshold, flag="train") # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format X2, Y1, Y2, IouS = roi_helpers.calc_iou( R, img_data, C, class_mapping) if X2 is None: rpn_accuracy_rpn_monitor.append(0) rpn_accuracy_for_epoch.append(0) continue neg_samples = np.where(Y1[0, :, -1] == 1) pos_samples = np.where(Y1[0, :, -1] == 0) if len(neg_samples) > 0: neg_samples = neg_samples[0] else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) if C.num_rois > 1: if len(pos_samples) < C.num_rois // 2: selected_pos_samples = pos_samples.tolist() else: selected_pos_samples = np.random.choice( pos_samples, C.num_rois // 2, replace=False).tolist() try: selected_neg_samples = np.random.choice( neg_samples, C.num_rois - len(selected_pos_samples), replace=False).tolist() except: selected_neg_samples = np.random.choice( neg_samples, C.num_rois - len(selected_pos_samples), replace=True).tolist() sel_samples = selected_pos_samples + selected_neg_samples else: # in the extreme case where num_rois = 1, we pick a random pos or neg sample selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) if train_final_classifier: loss_class = model_classifier.train_on_batch( [X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]]) # losses if train_rpn: losses[iter_num, 0] = loss_rpn[1] losses[iter_num, 1] = loss_rpn[2] else: losses[iter_num, 0] = 0 losses[iter_num, 1] = 0 if train_final_classifier: losses[iter_num, 2] = loss_class[1] losses[iter_num, 3] = loss_class[2] losses[iter_num, 4] = loss_class[3] # accuracy else: losses[iter_num, 2] = 0 losses[iter_num, 3] = 0 losses[iter_num, 4] = 0 iter_num += 1 progbar.update( iter_num, [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])), ('detector_cls', np.mean(losses[:iter_num, 2])), ('detector_regr', np.mean(losses[:iter_num, 3]))]) if iter_num == epoch_length: if train_rpn: loss_rpn_cls = np.mean(losses[:, 0]) loss_rpn_regr = np.mean(losses[:, 1]) else: loss_rpn_cls = 0 loss_rpn_regr = 0 if train_final_classifier: loss_class_cls = np.mean(losses[:, 2]) loss_class_regr = np.mean(losses[:, 3]) class_acc = np.mean(losses[:, 4]) else: loss_class_cls = 0 loss_class_regr = 0 class_acc = 0 mean_overlapping_bboxes = float(sum( rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] if C.verbose: print( 'Mean number of bounding boxes from RPN overlapping ground truth boxes: {}' .format(mean_overlapping_bboxes)) print( 'Classifier accuracy for bounding boxes from RPN: {}' .format(class_acc)) print('Loss RPN classifier: {}'.format(loss_rpn_cls)) print('Loss RPN regression: {}'.format(loss_rpn_regr)) print('Loss Detector classifier: {}'.format( loss_class_cls)) print('Loss Detector regression: {}'.format( loss_class_regr)) print('Elapsed time: {}'.format(time.time() - start_time)) loss_dict_train = { "rpn_cls": loss_rpn_cls, "rpn_reg": loss_rpn_regr, "final_cls": loss_class_cls, "final_reg": loss_class_regr } curr_loss = 0 for l in losses_to_watch: curr_loss += loss_dict_train[l] iter_num = 0 start_time = time.time() write_log(tbCallBack, train_names, [ loss_rpn_cls, loss_rpn_regr, loss_class_cls, loss_class_regr, curr_loss, class_acc ], epoch_num) if curr_loss < best_loss: if C.verbose: print( 'Total loss decreased from {} to {} in training, saving weights' .format(best_loss, curr_loss)) save_log_data = '\nTotal loss decreased from {} to {} in epoch {}/{} in training, saving weights'.format( best_loss, curr_loss, epoch_num + 1, num_epochs) with open("./saving_log.txt", "a") as f: f.write(save_log_data) best_loss = curr_loss model_all.save_weights(C.weights_all_path) break except Exception as e: print('Exception: {}'.format(e)) continue if validation_interval > 0: # validation if (epoch_num + 1) % validation_interval == 0: progbar = generic_utils.Progbar(validation_epoch_length) print("Validation... \n") while True: try: X, Y, img_data = next(data_gen_val) if train_rpn: val_loss_rpn = model_rpn.test_on_batch(X, Y) P_rpn = model_rpn.predict_on_batch(X) R = roi_helpers.rpn_to_roi( P_rpn[0], P_rpn[1], C, K.image_dim_ordering(), use_regr=True, overlap_thresh=C.rpn_nms_threshold, flag="train") # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format X2, Y1, Y2, IouS = roi_helpers.calc_iou( R, img_data, C, class_mapping) neg_samples = np.where(Y1[0, :, -1] == 1) pos_samples = np.where(Y1[0, :, -1] == 0) if len(neg_samples) > 0: neg_samples = neg_samples[0] else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) if C.num_rois > 1: if len(pos_samples) < C.num_rois // 2: selected_pos_samples = pos_samples.tolist() else: selected_pos_samples = np.random.choice( pos_samples, C.num_rois // 2, replace=False).tolist() try: selected_neg_samples = np.random.choice( neg_samples, C.num_rois - len(selected_pos_samples), replace=False).tolist() except: selected_neg_samples = np.random.choice( neg_samples, C.num_rois - len(selected_pos_samples), replace=True).tolist() sel_samples = selected_pos_samples + selected_neg_samples else: # in the extreme case where num_rois = 1, we pick a random pos or neg sample selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) if train_final_classifier: val_loss_class = model_classifier.test_on_batch( [X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]]) if train_rpn: losses_val[iter_num, 0] = val_loss_rpn[1] losses_val[iter_num, 1] = val_loss_rpn[2] else: losses_val[iter_num, 0] = 0 losses_val[iter_num, 1] = 0 if train_final_classifier: losses_val[iter_num, 2] = val_loss_class[1] losses_val[iter_num, 3] = val_loss_class[2] losses_val[iter_num, 4] = val_loss_class[3] else: losses_val[iter_num, 2] = 0 losses_val[iter_num, 3] = 0 losses_val[iter_num, 4] = 0 iter_num += 1 progbar.update( iter_num, [('rpn_cls', np.mean(losses_val[:iter_num, 0])), ('rpn_regr', np.mean(losses_val[:iter_num, 1])), ('detector_cls', np.mean(losses_val[:iter_num, 2])), ('detector_regr', np.mean(losses_val[:iter_num, 3]))]) if iter_num == validation_epoch_length: if train_rpn: val_loss_rpn_cls = np.mean(losses_val[:, 0]) val_loss_rpn_regr = np.mean(losses_val[:, 1]) else: val_loss_rpn_cls = 0 val_loss_rpn_regr = 0 if train_final_classifier: val_loss_class_cls = np.mean(losses_val[:, 2]) val_loss_class_regr = np.mean(losses_val[:, 3]) val_class_acc = np.mean(losses_val[:, 4]) else: val_loss_class_cls = 0 val_loss_class_regr = 0 val_class_acc = 0 mean_overlapping_bboxes = float( sum(rpn_accuracy_for_epoch)) / len( rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] loss_dict_valid = { "rpn_cls": val_loss_rpn_cls, "rpn_reg": val_loss_rpn_regr, "final_cls": val_loss_class_cls, "final_reg": val_loss_class_regr } val_curr_loss = 0 for l in losses_to_watch: val_curr_loss += loss_dict_valid[l] write_log(tbCallBack, val_names, [ val_loss_rpn_cls, val_loss_rpn_regr, val_loss_class_cls, val_loss_class_regr, val_curr_loss, val_class_acc ], epoch_num) if C.verbose: print('[INFO VALIDATION]') print( 'Mean number of bounding boxes from RPN overlapping ground truth boxes: {}' .format(mean_overlapping_bboxes)) print( 'Classifier accuracy for bounding boxes from RPN: {}' .format(val_class_acc)) print('Loss RPN classifier: {}'.format( val_loss_rpn_cls)) print('Loss RPN regression: {}'.format( val_loss_rpn_regr)) print('Loss Detector classifier: {}'.format( val_loss_class_cls)) print('Loss Detector regression: {}'.format( val_loss_class_regr)) print( "current loss: %.2f, best loss: %.2f at epoch: %d" % (val_curr_loss, val_best_loss, val_best_loss_epoch)) print('Elapsed time: {}'.format(time.time() - start_time)) if val_curr_loss < val_best_loss: if C.verbose: print( 'Total loss decreased from {} to {}, saving weights' .format(val_best_loss, val_curr_loss)) save_log_data = '\nTotal loss decreased from {} to {} in epoch {}/{} in validation, saving weights'.format( val_best_loss, val_curr_loss, epoch_num + 1, num_epochs) with open("./saving_log.txt", "a") as f: f.write(save_log_data) val_best_loss = val_curr_loss val_best_loss_epoch = epoch_num model_all.save_weights(C.weights_all_path) start_time = time.time() iter_num = 0 break except: pass print('Training complete, exiting.')
import pprint import sys import json from keras_frcnn import config sys.setrecursionlimit(40000) C = config.Config() C.num_rois = 2 C.use_vertical_flips = True #from keras_frcnn.pascal_voc_parser import get_data from keras_frcnn.simple_parser import get_data all_imgs, classes_count, class_mapping = get_data(sys.argv[1]) if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) with open('classes.json', 'w') as class_data_json: json.dump(class_mapping, class_data_json) inv_map = {v: k for k, v in class_mapping.items()} #pprint.pprint(classes_count) print(('Num classes (including bg) = {}'.format(len(classes_count)))) random.shuffle(all_imgs) num_imgs = len(all_imgs)
def test_kitti(): # config for data argument cfg = config.Config() cfg.use_horizontal_flips = True cfg.use_vertical_flips = True cfg.rot_90 = True cfg.num_rois = 32 cfg.base_net_weights = os.path.join('./model/', nn.get_weight_path()) # TODO: the only file should to be change for other data to train cfg.model_path = './model/kitti_frcnn_last.hdf5' cfg.simple_label_file = 'kitti_simple_label.txt' #查看绝对路径 #t = os.path.abspath('kitti_simple_label.txt') all_images, classes_count, class_mapping = get_data(cfg.simple_label_file) pedestrain_num = classes_count['Pedestrian'] if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) cfg.class_mapping = class_mapping with open(cfg.config_save_file, 'wb') as config_f: pickle.dump(cfg, config_f) print( 'Config has been written to {}, and can be loaded when testing to ensure correct results' .format(cfg.config_save_file)) inv_map = {v: k for k, v in class_mapping.items()} print('Training images per class:') pprint.pprint(classes_count) print('Num classes (including bg) = {}'.format(len(classes_count))) random.shuffle(all_images) num_imgs = len(all_images) train_imgs = [s for s in all_images if s['imageset'] == 'trainval'] val_imgs = [s for s in all_images if s['imageset'] == 'test'] print('Num train samples {}'.format(len(train_imgs))) print('Num val samples {}'.format(len(val_imgs))) data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, cfg, nn.get_img_output_length, K.image_dim_ordering(), mode='train') data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, cfg, nn.get_img_output_length, K.image_dim_ordering(), mode='val') if K.image_dim_ordering() == 'th': input_shape_img = (3, None, None) else: input_shape_img = (None, None, 3) #img_input: 三通道,为输入图片 img_input = Input(shape=input_shape_img) #roi_input:为输入图片boudingbox的四维值 roi_input = Input(shape=(None, 4)) # define the base network (resnet here, can be VGG, Inception, etc) #shared_layers : 基础的网络结构(例如: resnet,vgg)通过该网络来提取原始图片的featuremap特征,最后将这些特征送入RPN网络和RCNN网络 # 1.定义nn的输入层,faster-rcnn共享卷积层, shared_layers = nn.nn_base(img_input, trainable=True) # define the RPN, built on the base layers 2.定义RPN层 num_anchors = len(cfg.anchor_box_scales) * len(cfg.anchor_box_ratios) #RPN网络用于生成region proposals,该层通过sigmoid函数判断anchors属于foreground或者background, 再利用bounding box regression修正anchors获得修正后的RoI。 # rpn: 在基础的网络结构使用9个bounding box产生了分类和回归的rpn网络。定义rpn层,return [x_class, x_regr, base_layers] rpn = nn.rpn(shared_layers, num_anchors) #定义分类器层,定义classifier的输入和输出 classifier = nn.classifier(shared_layers, roi_input, cfg.num_rois, nb_classes=len(classes_count), trainable=True) #定义rpn模型的输入和输出一个框2分类(最后使用的sigmod而不是softmax)和框的回归 model_rpn = Model(img_input, rpn[:2]) #定义classifier的输入和输出 model_classifier = Model([img_input, roi_input], classifier) # this is a model that holds both the RPN and the classifier, used to load/save weights for the models model_all = Model([img_input, roi_input], rpn[:2] + classifier) try: print('loading weights from {}'.format(cfg.base_net_weights)) #TODO 第一次运行因为model_path没有hdf5文件,因此修改为cfg.base_net_weights,现在可以修改回来 model_rpn.load_weights(cfg.model_path, by_name=True) model_classifier.load_weights(cfg.model_path, by_name=True) # model_rpn.load_weights(cfg.base_net_weights, by_name=True) # model_classifier.load_weights(cfg.base_net_weights, by_name=True) except Exception as e: print(e) print( 'Could not load pretrained model weights. Weights can be found in the keras application folder ' 'https://github.com/fchollet/keras/tree/master/keras/applications') optimizer = Adam(lr=1e-5) optimizer_classifier = Adam(lr=1e-5) model_rpn.compile(optimizer=optimizer, loss=[ losses_fn.rpn_loss_cls(num_anchors), losses_fn.rpn_loss_regr(num_anchors) ]) model_classifier.compile( optimizer=optimizer_classifier, loss=[ losses_fn.class_loss_cls, losses_fn.class_loss_regr(len(classes_count) - 1) ], metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'}) model_all.compile(optimizer='sgd', loss='mae') #todo 增加tensorboard日志文件 log_path = './graph' callback = TensorBoard(log_path, histogram_freq=0, write_graph=True, write_images=True) callback.set_model(model_all) #todo epoch的大小为训练图片的个数 # epoch_length = len(train_imgs) epoch_length = len(val_imgs) #epoch_length = 47182 num_epochs = int(cfg.num_epochs) iter_num = 0 losses = np.zeros((epoch_length, 5)) #todo losses_val = np.zeros((epoch_length, 5)) rpn_accuracy_rpn_monitor = [] rpn_accuracy_for_epoch = [] rpn_accuracy_rpn_monitor_val = [] rpn_accuracy_for_epoch_val = [] start_time = time.time() best_loss = np.Inf class_mapping_inv = {v: k for k, v in class_mapping.items()} print('Starting testing') vis = True allbbox = 0 #只有训练的,改成只有测试的 for epoch_num in range(num_epochs): progbar = generic_utils.Progbar(epoch_length) print('Epoch {}/{}'.format(epoch_num + 1, num_epochs)) while True: try: if len(rpn_accuracy_rpn_monitor ) == epoch_length and cfg.verbose: mean_overlapping_bboxes = float( sum(rpn_accuracy_rpn_monitor)) / len( rpn_accuracy_rpn_monitor) rpn_accuracy_rpn_monitor = [] print( 'Average number of overlapping bounding boxes from RPN = {} for {} previous iterations' .format(mean_overlapping_bboxes, epoch_length)) if mean_overlapping_bboxes == 0: print( 'RPN is not producing bounding boxes that overlap' ' the ground truth boxes. Check RPN settings or keep training.' ) #todo train修改为val # X, Y, img_data = next(data_gen_train) X, Y, img_data = next(data_gen_val) # loss_rpn = model_rpn.train_on_batch(X, Y) loss_rpn = model_rpn.test_on_batch(X, Y) P_rpn = model_rpn.predict_on_batch(X) result = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], cfg, K.image_dim_ordering(), use_regr=True, overlap_thresh=0.7, max_boxes=300) # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format #todo 增加 count # X2, Y1, Y2, IouS = roi_helpers.calc_iou(result, img_data, cfg, class_mapping) X2, Y1, Y2, IouS, count = roi_helpers.calc_iou( result, img_data, cfg, class_mapping) allbbox = allbbox + count if X2 is None: rpn_accuracy_rpn_monitor.append(0) rpn_accuracy_for_epoch.append(0) continue neg_samples = np.where(Y1[0, :, -1] == 1) pos_samples = np.where(Y1[0, :, -1] == 0) if len(neg_samples) > 0: neg_samples = neg_samples[0] else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) if cfg.num_rois > 1: if len(pos_samples) < cfg.num_rois // 2: selected_pos_samples = pos_samples.tolist() else: selected_pos_samples = np.random.choice( pos_samples, cfg.num_rois // 2, replace=False).tolist() try: selected_neg_samples = np.random.choice( neg_samples, cfg.num_rois - len(selected_pos_samples), replace=False).tolist() except: selected_neg_samples = np.random.choice( neg_samples, cfg.num_rois - len(selected_pos_samples), replace=True).tolist() sel_samples = selected_pos_samples + selected_neg_samples else: # in the extreme case where num_rois = 1, we pick a random pos or neg sample selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) loss_class = model_classifier.train_on_batch( [X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]]) losses[iter_num, 0] = loss_rpn[1] losses[iter_num, 1] = loss_rpn[2] losses[iter_num, 2] = loss_class[1] losses[iter_num, 3] = loss_class[2] losses[iter_num, 4] = loss_class[3] iter_num += 1 progbar.update( iter_num, [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])), ('detector_cls', np.mean(losses[:iter_num, 2])), ('detector_regr', np.mean(losses[:iter_num, 3]))]) if iter_num == epoch_length: loss_rpn_cls = np.mean(losses[:, 0]) loss_rpn_regr = np.mean(losses[:, 1]) loss_class_cls = np.mean(losses[:, 2]) loss_class_regr = np.mean(losses[:, 3]) class_acc = np.mean(losses[:, 4]) mean_overlapping_bboxes = float(sum( rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] if cfg.verbose: print( 'Mean number of bounding boxes from RPN overlapping ground truth boxes: {}' .format(mean_overlapping_bboxes)) print( 'Classifier accuracy for bounding boxes from RPN: {}' .format(class_acc)) print('Loss RPN classifier: {}'.format(loss_rpn_cls)) print('Loss RPN regression: {}'.format(loss_rpn_regr)) print('Loss Detector classifier: {}'.format( loss_class_cls)) print('Loss Detector regression: {}'.format( loss_class_regr)) print('Elapsed time: {}'.format(time.time() - start_time)) curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr iter_num = 0 start_time = time.time() if curr_loss < best_loss: if cfg.verbose: print( 'Total loss decreased from {} to {}, saving weights' .format(best_loss, curr_loss)) best_loss = curr_loss model_all.save_weights(cfg.model_path) break except Exception as e: print('Exception: {}'.format(e)) # save model model_all.save_weights(cfg.model_path) continue print("检测准确率:") print(float(allbbox / pedestrain_num)) print('testing complete, exiting.')
from keras.utils import generic_utils from keras_frcnn.simple_parser import get_data C = config.Config() now = datetime.datetime.now() otherStyleTime = now.strftime("%Y-%m-%d %H:%M:%S") model_path = 'model/' + str(otherStyleTime) + 'stag_model_frcnn.hdf5' config_path = 'model/' + str(otherStyleTime) + 'stag_config.pickle' C.model_path = model_path C.num_rois = 32 all_imgs, classes_count, class_mapping = get_data('managedata/stag_data_with_person.txt') if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) C.class_mapping = class_mapping inv_map = {v: k for k, v in class_mapping.iteritems()} print('Training images per class:') pprint.pprint(classes_count) print('Num classes (including bg) = {}'.format(len(classes_count))) config_output_filename = config_path
def train_kitti(): # config for data argument cfg = config.Config() cfg.use_horizontal_flips = True cfg.use_vertical_flips = True cfg.rot_90 = True cfg.num_rois = 32 cfg.base_net_weights = os.path.join('./model/', nn.get_weight_path()) # TODO: the only file should to be change for other data to train cfg.model_path = './model/kitti_frcnn_last.hdf5' cfg.simple_label_file = 'kitti_simple_label.txt' all_images, classes_count, class_mapping = get_data(cfg.simple_label_file) if 'bg' not in classes_count: classes_count['bg'] = 0 class_mapping['bg'] = len(class_mapping) cfg.class_mapping = class_mapping with open(cfg.config_save_file, 'wb') as config_f: pickle.dump(cfg, config_f) print('Config has been written to {}, and can be loaded when testing to ensure correct results'.format( cfg.config_save_file)) inv_map = {v: k for k, v in class_mapping.items()} print('Training images per class:') pprint.pprint(classes_count) print('Num classes (including bg) = {}'.format(len(classes_count))) random.shuffle(all_images) num_imgs = len(all_images) train_imgs = [s for s in all_images if s['imageset'] == 'trainval'] val_imgs = [s for s in all_images if s['imageset'] == 'test'] print('Num train samples {}'.format(len(train_imgs))) print('Num val samples {}'.format(len(val_imgs))) data_gen_train = data_generators.get_anchor_gt(train_imgs, classes_count, cfg, nn.get_img_output_length, K.image_dim_ordering(), mode='train') data_gen_val = data_generators.get_anchor_gt(val_imgs, classes_count, cfg, nn.get_img_output_length, K.image_dim_ordering(), mode='val') if K.image_dim_ordering() == 'th': input_shape_img = (3, None, None) else: input_shape_img = (None, None, 3) img_input = Input(shape=input_shape_img) roi_input = Input(shape=(None, 4)) # define the base network (resnet here, can be VGG, Inception, etc) shared_layers = nn.nn_base(img_input, trainable=True) # define the RPN, built on the base layers num_anchors = len(cfg.anchor_box_scales) * len(cfg.anchor_box_ratios) rpn = nn.rpn(shared_layers, num_anchors) classifier = nn.classifier(shared_layers, roi_input, cfg.num_rois, nb_classes=len(classes_count), trainable=True) model_rpn = Model(img_input, rpn[:2]) model_classifier = Model([img_input, roi_input], classifier) # this is a model that holds both the RPN and the classifier, used to load/save weights for the models model_all = Model([img_input, roi_input], rpn[:2] + classifier) try: print('loading weights from {}'.format(cfg.base_net_weights)) model_rpn.load_weights(cfg.model_path, by_name=True) model_classifier.load_weights(cfg.model_path, by_name=True) except Exception as e: print(e) print('Could not load pretrained model weights. Weights can be found in the keras application folder ' 'https://github.com/fchollet/keras/tree/master/keras/applications') optimizer = Adam(lr=1e-5) optimizer_classifier = Adam(lr=1e-5) model_rpn.compile(optimizer=optimizer, loss=[losses_fn.rpn_loss_cls(num_anchors), losses_fn.rpn_loss_regr(num_anchors)]) model_classifier.compile(optimizer=optimizer_classifier, loss=[losses_fn.class_loss_cls, losses_fn.class_loss_regr(len(classes_count) - 1)], metrics={'dense_class_{}'.format(len(classes_count)): 'accuracy'}) model_all.compile(optimizer='sgd', loss='mae') epoch_length = 1000 num_epochs = int(cfg.num_epochs) iter_num = 0 losses = np.zeros((epoch_length, 5)) rpn_accuracy_rpn_monitor = [] rpn_accuracy_for_epoch = [] start_time = time.time() best_loss = np.Inf class_mapping_inv = {v: k for k, v in class_mapping.items()} print('Starting training') vis = True for epoch_num in range(num_epochs): progbar = generic_utils.Progbar(epoch_length) print('Epoch {}/{}'.format(epoch_num + 1, num_epochs)) while True: try: if len(rpn_accuracy_rpn_monitor) == epoch_length and cfg.verbose: mean_overlapping_bboxes = float(sum(rpn_accuracy_rpn_monitor)) / len(rpn_accuracy_rpn_monitor) rpn_accuracy_rpn_monitor = [] print( 'Average number of overlapping bounding boxes from RPN = {} for {} previous iterations'.format( mean_overlapping_bboxes, epoch_length)) if mean_overlapping_bboxes == 0: print('RPN is not producing bounding boxes that overlap' ' the ground truth boxes. Check RPN settings or keep training.') X, Y, img_data = next(data_gen_train) loss_rpn = model_rpn.train_on_batch(X, Y) P_rpn = model_rpn.predict_on_batch(X) result = roi_helpers.rpn_to_roi(P_rpn[0], P_rpn[1], cfg, K.image_dim_ordering(), use_regr=True, overlap_thresh=0.7, max_boxes=300) # note: calc_iou converts from (x1,y1,x2,y2) to (x,y,w,h) format X2, Y1, Y2, IouS = roi_helpers.calc_iou(result, img_data, cfg, class_mapping) if X2 is None: rpn_accuracy_rpn_monitor.append(0) rpn_accuracy_for_epoch.append(0) continue neg_samples = np.where(Y1[0, :, -1] == 1) pos_samples = np.where(Y1[0, :, -1] == 0) if len(neg_samples) > 0: neg_samples = neg_samples[0] else: neg_samples = [] if len(pos_samples) > 0: pos_samples = pos_samples[0] else: pos_samples = [] rpn_accuracy_rpn_monitor.append(len(pos_samples)) rpn_accuracy_for_epoch.append((len(pos_samples))) if cfg.num_rois > 1: if len(pos_samples) < cfg.num_rois // 2: selected_pos_samples = pos_samples.tolist() else: selected_pos_samples = np.random.choice(pos_samples, cfg.num_rois // 2, replace=False).tolist() try: selected_neg_samples = np.random.choice(neg_samples, cfg.num_rois - len(selected_pos_samples), replace=False).tolist() except: selected_neg_samples = np.random.choice(neg_samples, cfg.num_rois - len(selected_pos_samples), replace=True).tolist() sel_samples = selected_pos_samples + selected_neg_samples else: # in the extreme case where num_rois = 1, we pick a random pos or neg sample selected_pos_samples = pos_samples.tolist() selected_neg_samples = neg_samples.tolist() if np.random.randint(0, 2): sel_samples = random.choice(neg_samples) else: sel_samples = random.choice(pos_samples) loss_class = model_classifier.train_on_batch([X, X2[:, sel_samples, :]], [Y1[:, sel_samples, :], Y2[:, sel_samples, :]]) losses[iter_num, 0] = loss_rpn[1] losses[iter_num, 1] = loss_rpn[2] losses[iter_num, 2] = loss_class[1] losses[iter_num, 3] = loss_class[2] losses[iter_num, 4] = loss_class[3] iter_num += 1 progbar.update(iter_num, [('rpn_cls', np.mean(losses[:iter_num, 0])), ('rpn_regr', np.mean(losses[:iter_num, 1])), ('detector_cls', np.mean(losses[:iter_num, 2])), ('detector_regr', np.mean(losses[:iter_num, 3]))]) if iter_num == epoch_length: loss_rpn_cls = np.mean(losses[:, 0]) loss_rpn_regr = np.mean(losses[:, 1]) loss_class_cls = np.mean(losses[:, 2]) loss_class_regr = np.mean(losses[:, 3]) class_acc = np.mean(losses[:, 4]) mean_overlapping_bboxes = float(sum(rpn_accuracy_for_epoch)) / len(rpn_accuracy_for_epoch) rpn_accuracy_for_epoch = [] if cfg.verbose: print('Mean number of bounding boxes from RPN overlapping ground truth boxes: {}'.format( mean_overlapping_bboxes)) print('Classifier accuracy for bounding boxes from RPN: {}'.format(class_acc)) print('Loss RPN classifier: {}'.format(loss_rpn_cls)) print('Loss RPN regression: {}'.format(loss_rpn_regr)) print('Loss Detector classifier: {}'.format(loss_class_cls)) print('Loss Detector regression: {}'.format(loss_class_regr)) print('Elapsed time: {}'.format(time.time() - start_time)) curr_loss = loss_rpn_cls + loss_rpn_regr + loss_class_cls + loss_class_regr iter_num = 0 start_time = time.time() if curr_loss < best_loss: if cfg.verbose: print('Total loss decreased from {} to {}, saving weights'.format(best_loss, curr_loss)) best_loss = curr_loss model_all.save_weights(cfg.model_path) break except Exception as e: print('Exception: {}'.format(e)) # save model model_all.save_weights(cfg.model_path) continue print('Training complete, exiting.')
def meature_map(test_path,length): test_imgs, _, _ = sp.get_data(test_path) T = {} P = {} mAPs = [] for idx, img_data in enumerate(test_imgs): print('{}/{}'.format(idx, len(test_imgs))) st = time.time() filepath = img_data['filepath'] img = cv2.imread(filepath) X, fx, fy = format_img_map(img, C) # Change X (img) shape from (1, channel, height, width) to (1, height, width, channel) X = np.transpose(X, (0, 2, 3, 1)) # get the feature maps and output from the RPN [Y1, Y2, F] = model_rpn.predict(X) R = roi_helpers.rpn_to_roi(Y1, Y2, C, K.image_dim_ordering(), overlap_thresh=0.7) # convert from (x1,y1,x2,y2) to (x,y,w,h) R[:, 2] -= R[:, 0] R[:, 3] -= R[:, 1] # apply the spatial pyramid pooling to the proposed regions bboxes = {} probs = {} for jk in range(R.shape[0] // C.num_rois + 1): ROIs = np.expand_dims(R[C.num_rois * jk:C.num_rois * (jk + 1), :], axis=0) if ROIs.shape[1] == 0: break if jk == R.shape[0] // C.num_rois: # pad R curr_shape = ROIs.shape target_shape = (curr_shape[0], C.num_rois, curr_shape[2]) ROIs_padded = np.zeros(target_shape).astype(ROIs.dtype) ROIs_padded[:, :curr_shape[1], :] = ROIs ROIs_padded[0, curr_shape[1]:, :] = ROIs[0, 0, :] ROIs = ROIs_padded [P_cls, P_regr] = model_classifier_only.predict([F, ROIs]) # Calculate all classes' bboxes coordinates on resized image (300, 400) # Drop 'bg' classes bboxes for ii in range(P_cls.shape[1]): # If class name is 'bg', continue if np.argmax(P_cls[0, ii, :]) == (P_cls.shape[2] - 1): continue # Get class name cls_name = class_mapping[np.argmax(P_cls[0, ii, :])] if cls_name not in bboxes: bboxes[cls_name] = [] probs[cls_name] = [] (x, y, w, h) = ROIs[0, ii, :] cls_num = np.argmax(P_cls[0, ii, :]) try: (tx, ty, tw, th) = P_regr[0, ii, 4 * cls_num:4 * (cls_num + 1)] tx /= C.classifier_regr_std[0] ty /= C.classifier_regr_std[1] tw /= C.classifier_regr_std[2] th /= C.classifier_regr_std[3] x, y, w, h = roi_helpers.apply_regr(x, y, w, h, tx, ty, tw, th) except: pass bboxes[cls_name].append([16 * x, 16 * y, 16 * (x + w), 16 * (y + h)]) probs[cls_name].append(np.max(P_cls[0, ii, :])) all_dets = [] for key in bboxes: bbox = np.array(bboxes[key]) # Apply non-max-suppression on final bboxes to get the output bounding boxe new_boxes, new_probs = roi_helpers.non_max_suppression_fast(bbox, np.array(probs[key]), overlap_thresh=0.5) for jk in range(new_boxes.shape[0]): (x1, y1, x2, y2) = new_boxes[jk, :] det = {'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2, 'class': key, 'prob': new_probs[jk]} all_dets.append(det) print('Elapsed time = {}'.format(time.time() - st)) t, p = get_map(all_dets, img_data['bboxes'], (fx, fy)) for key in t.keys(): if key not in T: T[key] = [] P[key] = [] T[key].extend(t[key]) P[key].extend(p[key]) all_aps = [] for key in T.keys(): ap = average_precision_score(T[key], P[key]) print('{} AP: {}'.format(key, ap)) all_aps.append(ap) print('mAP = {}'.format(np.mean(np.array(all_aps)))) mAPs.append(np.mean(np.array(all_aps))) # print(T) # print(P) print() print('mean average precision:', np.mean(np.array(mAPs))) mAP = [mAP for mAP in mAPs if str(mAP) != 'nan'] mean_average_prec = round(np.mean(np.array(mAP)), 3) print('After training %dk batches, the mean average precision is %0.3f' % (length, mean_average_prec))