Exemple #1
0
def convert_optimizer_trial_to_hps(
        hps: hp_module.HyperParameters,
        optimizer_trial: Dict[Text, Any]) -> hp_module.HyperParameters:
    """Converts Optimizer Trial parameters into KerasTuner HyperParameters."""
    hps = hp_module.HyperParameters.from_config(hps.get_config())
    hps.values = {}
    for param in optimizer_trial["parameters"]:
        if "floatValue" in param:
            hps.values[param["parameter"]] = float(param["floatValue"])
        if "intValue" in param:
            hps.values[param["parameter"]] = int(param["intValue"])
        if "stringValue" in param:
            hps.values[param["parameter"]] = str(param["stringValue"])
    return hps
Exemple #2
0
def convert_vizier_trial_to_hps(
        hps: hp_module.HyperParameters,
        vizier_trial: Dict[Text, Any]) -> hp_module.HyperParameters:
    """Converts Vizier Trial parameters into KerasTuner HyperParameters.

    Args:
        hps: Sample KerasTuner HyperParameters object for config initialization
        vizier_trial: A Vizier Trial instance.

    Returns:
        A KerasTuner HyperParameters object that holds the Vizier Trial
        parameters.
    """
    hps = hp_module.HyperParameters.from_config(hps.get_config())
    hps.values = convert_vizier_trial_to_dict(vizier_trial)
    return hps
Exemple #3
0
 def _verify_output(self):
     # Test best hparams.
     best_hparams_path = os.path.join(self._best_hparams.uri,
                                      'best_hyperparameters.txt')
     self.assertTrue(tf.io.gfile.exists(best_hparams_path))
     with tf.io.gfile.GFile(best_hparams_path, mode='r') as f:
         best_hparams_config = json.loads(f.read())
     best_hparams = HyperParameters.from_config(best_hparams_config)
     self.assertBetween(best_hparams.get('learning_rate'), 1e-4, 1.01)
     self.assertBetween(best_hparams.get('num_layers'), 1, 5)
Exemple #4
0
def convert_hyperparams_to_hparams(
        hyperparams: hp_module.HyperParameters
) -> Dict[hparams_api.HParam, Any]:
    """Converts KerasTuner HyperParameters to TensorBoard HParams.

    Args:
        hyperparams: A KerasTuner HyperParameters instance

    Returns:
        A dict that maps TensorBoard HParams to current values.
    """
    hparams = {}
    for hp in hyperparams.space:
        hparams_value = {}
        try:
            hparams_value = hyperparams.get(hp.name)
        except ValueError:
            continue

        hparams_domain = {}
        if isinstance(hp, hp_module.Choice):
            hparams_domain = hparams_api.Discrete(hp.values)
        elif isinstance(hp, hp_module.Int):
            if hp.step is None or hp.step == 1:
                hparams_domain = hparams_api.IntInterval(
                    hp.min_value, hp.max_value)
            else:
                # Note: `hp.max_value` is inclusive, unlike the end index
                # of Python `range()`, which is exclusive
                values = list(range(hp.min_value, hp.max_value + 1, hp.step))
                hparams_domain = hparams_api.Discrete(values)
        elif isinstance(hp, hp_module.Float):
            if hp.step is None:
                hparams_domain = hparams_api.RealInterval(
                    hp.min_value, hp.max_value)
            else:
                # Note: `hp.max_value` is inclusive, which is also
                # the default for Numpy's linspace
                num_samples = int((hp.max_value - hp.min_value) / hp.step)
                end_value = hp.min_value + (num_samples * hp.step)
                values = np.linspace(hp.min_value, end_value,
                                     num_samples + 1).tolist()
                hparams_domain = hparams_api.Discrete(values)
        elif isinstance(hp, hp_module.Boolean):
            hparams_domain = hparams_api.Discrete([True, False])
        elif isinstance(hp, hp_module.Fixed):
            hparams_domain = hparams_api.Discrete([hp.value])
        else:
            raise ValueError(
                "`HyperParameter` type not recognized: {}".format(hp))

        hparams_key = hparams_api.HParam(hp.name, hparams_domain)
        hparams[hparams_key] = hparams_value

    return hparams
Exemple #5
0
    def pretrain(self,inputs,outputs,iteration):
        """
        Optimize the hyperparameters of the ANN.

        Args:
            inputs (np.array): All input data.
            outputs (np.array): All output data.
            iteration (int): Iteration number.

        Returns:
            best_hp (kerastuner.engine.hyperparameters.HyperParameters): Optimal hyperparameters.
        
        Notes:
            Optimization objective fixed on val_loss.
        """
        print("### Performing Keras Tuner optimization of the ANN###")
        # Select hyperparameters to tune
        hp = HyperParameters()
        valid_entries = ["activation","neurons","layers","learning_rate","regularization","sparsity"]
        if not all([entry in valid_entries for entry in self["optimize"]]):
            raise Exception("Invalid hyperparameters specified for optimization")
        
        if "activation" in self["optimize"]:
            hp.Choice("activation_function",["sigmoid","relu","swish","tanh"],default=self["activation"])
        if "neurons" in self["optimize"]:
            hp.Int("no_neurons",3,20,sampling="log",default=self["no_neurons"])
        if "layers" in self["optimize"]:
            hp.Int("no_hid_layers",1,6,default=self["no_layers"])
        if "learning_rate" in self["optimize"]:
            hp.Float("learning_rate",0.001,0.1,sampling="log",default=self["learning_rate"])
        if "regularization" in self["optimize"]:
            hp.Float("regularization",0.0001,0.01,sampling="log",default=self["kernel_regularizer"])
        if "sparsity" in self["optimize"]:
            hp.Float("sparsity",0.3,0.9,default=self["sparsity"])

        no_hps = len(hp._space)

        # In case none are chosen, only 1 run for fixed setting
        if no_hps == 0:
            hp.Fixed("no_neurons",self["no_neurons"])
        
        # Load tuner
        max_trials = self["max_trials"]*no_hps
        path_tf_format = "logs"

        time = datetime.now().strftime("%Y%m%d_%H%M")

        tuner_args = {"objective":"val_loss","hyperparameters":hp,"max_trials":max_trials,
                      "executions_per_trial":self["executions_per_trial"],"directory":path_tf_format,
                      "overwrite":True,"tune_new_entries":False,"project_name":f"opt"}
##                      "overwrite":True,"tune_new_entries":False,"project_name":f"opt_{time}"}

        if self["tuner"] == "random" or no_hps==0:
            tuner = RandomSearchCV(self.build_hypermodel,**tuner_args)            
        elif self["tuner"] == "bayesian":
            tuner = BayesianOptimizationCV(self.build_hypermodel,num_initial_points=3*no_hps,**tuner_args)

        # Load callbacks and remove early stopping
        callbacks_all = self.get_callbacks()
        callbacks = [call for call in callbacks_all if not isinstance(call,keras.callbacks.EarlyStopping)]

        # Optimize
        tuner.search(inputs,outputs,epochs=self["tuner_epochs"],verbose=0,shuffle=True,
                     callbacks=callbacks,iteration_no=iteration)

        # Retrieve and save best model
        best_hp = tuner.get_best_hyperparameters()[0]
        self.write_stats([best_hp.values],"ann_best_models")

        # Make a table of tuner stats
        scores = [tuner.oracle.trials[trial].score for trial in tuner.oracle.trials]
        hps = [tuner.oracle.trials[trial].hyperparameters.values for trial in tuner.oracle.trials]
        for idx,entry in enumerate(hps):
            entry["score"] = scores[idx]
        self.write_stats(hps,"ann_tuner_stats")

        return best_hp
Exemple #6
0
tuner = RandomSearch(
    MyHyperModel(img_size=(28, 28), classes=10),
    objective="val_accuracy",
    max_trials=5,
    directory="test_dir",
    project_name="case3",
)

tuner.search(x, y=y, epochs=5, validation_data=(val_x, val_y))

# """Case #4:
# - We restrict the search space
# - This means that default values are being used for params that are left out
# """

hp = HyperParameters()
hp.Choice("learning_rate", [1e-1, 1e-3])

tuner = RandomSearch(
    build_model,
    max_trials=5,
    hyperparameters=hp,
    tune_new_entries=False,
    objective="val_accuracy",
    directory="test_dir",
    project_name="case4",
)

tuner.search(x=x, y=y, epochs=5, validation_data=(val_x, val_y))

# """Case #5:
Exemple #7
0
    batch_size=16,
    shuffle=True,
    seed=7,
)

datagen_valid = datagen.flow_from_directory(
    "archive/val",
    color_mode="rgb",
    class_mode="categorical",
    target_size=(200, 200),
    batch_size=16,
    shuffle=True,
    seed=7,
)

hp = HyperParameters()


def build_model(hp):
    """
    建立模型
    :return: 模型
    """
    image_input = Input(shape=(200, 200, 3))
    layer1_1 = Conv2D(hp.Choice('num_filters_layer1_1',
                                values=[16, 32, 64],
                                default=16), (1, 1),
                      activation='relu')(image_input)
    #TensorShape([None, 200, 200, 64])

    layer2_1 = Conv2D(hp.Choice('num_filters_layer2_1',
Exemple #8
0
    MyHyperModel(img_size=(28, 28), num_classes=10),
    objective='val_accuracy',
    max_trials=5,
    directory='test_dir')

tuner.search(x,
             y=y,
             epochs=5,
             validation_data=(val_x, val_y))

# """Case #4:
# - We restrict the search space
# - This means that default values are being used for params that are left out
# """

hp = HyperParameters()
hp.Choice('learning_rate', [1e-1, 1e-3])

tuner = RandomSearch(
    build_model,
    max_trials=5,
    hyperparameters=hp,
    tune_new_entries=False,
    objective='val_accuracy')

tuner.search(x=x,
             y=y,
             epochs=5,
             validation_data=(val_x, val_y))

# """Case #5: