def find_optimal_kernel(mnk, algo, tree, tree_features, gpu_properties, autotuning_properties): """ Find the optimal kernel parameter set for a given (m, n, k) and a given algorithm :return: optimal_kernels: dictionary, keys: (m, n, k), values: Kernel object describing best parameters """ # Get parameter space for this (m, n, k) and this algorithm m, n, k = mnk parameter_space_ = kernel_algorithm[algo].promising_parameters( m, n, k, gpu_properties, autotuning_properties) parameter_space = pd.DataFrame(parameter_space_) del parameter_space_ parameter_space["algorithm"] = [algo] * len( parameter_space.index) # Add "algorithm" column if len(parameter_space.index) == 0: optimal_kernels = dict() else: # Get predictor features from raw parameters parameter_sets = PredictiveParameters(parameter_space, gpu_properties, autotuning_properties, None) predictors = np.array(parameter_sets.get_features(tree_features)) # Predict performances performances_scaled = tree.predict(predictors) del predictors parameter_performances = parameter_sets.params del parameter_sets parameter_performances["perf"] = performances_scaled del performances_scaled # Pick optimal kernel optimal_kernel = max(parameter_performances.to_dict("records"), key=lambda x: x["perf"]) del parameter_performances optimal_kernels = dict() optimal_kernels[(m, n, k)] = params_dict_to_kernel(**optimal_kernel, source="predicted") return optimal_kernels
def get_derived_pars( data_path, i, data_chunk, algorithm, gpu_properties, autotuning_properties, max_performances, ): # Compute derived parameters data_chunk["algorithm"] = [algorithm] * len( data_chunk.index) # add 'algorithm' column manually parameter_sets = PredictiveParameters(data_chunk, gpu_properties, autotuning_properties, max_performances) pars_to_get = derived_parameters["common"] + derived_parameters[algorithm] new_data = parameter_sets.get_features(pars_to_get) # Write to CSV filename = os.path.join(data_path, "training_data_{}-{}.csv".format(algorithm, i)) new_data.to_csv(filename, index=False) return filename
def main(tunedir, arch): """ This script is part of the workflow for predictive modelling of optimal libcusmm parameters. For more details, see predict.md. After downloading raw data from the dedicated repository, use this script to - Compute derived training data and write it to a CSV file - Record maximum and baseline performances of (m,n,k)-triplets in JSON files """ # =============================================================================== # Read GPU properties and autotuning properties with open("kernels/gpu_properties.json") as f: gpu_properties = json.load(f)["sm_" + str(arch)] with open("kernels/autotuning_properties.json") as f: autotuning_properties = json.load(f) # =============================================================================== # Loop over algorithms max_performances_per_mnk = dict() baseline_performances_per_algo_per_mnk = { "tiny": dict(), "small": dict(), "medium": dict(), "largeDB1": dict(), "largeDB2": dict(), } for name_algo, kernel_algo in kernel_algorithm.items(): raw_training_data_filename = os.path.join( tunedir, "raw_training_data_{}.csv".format(name_algo)) print("\nReading from {}".format(raw_training_data_filename)) # Read CSV and loop over chunks chunk_size = 10000 # Number of rows of CSV file to process at a time chunk_count = 0 for data_chunk in pd.read_csv(raw_training_data_filename, chunksize=chunk_size): # Print progress chunk_count += 1 print("Read chunk {:5>}".format(chunk_count)) # Get max_performance_per_mnk max_performances = get_max_performances_per_mnk(data_chunk) max_performances_per_mnk.update( dict( zip(to_string(*max_performances.keys()), max_performances.values()))) # Get baseline_per_mnk baseline_performances_algo = get_baseline_performances_per_mnk( data_chunk, name_algo, gpu_properties, autotuning_properties) baseline_performances_per_algo_per_mnk[name_algo].update( dict( zip( to_string(*baseline_performances_algo.keys()), baseline_performances_algo.values(), ))) # Compute derived parameters data_chunk["algorithm"] = [name_algo] * len( data_chunk.index) # add 'algorithm' column manually parameter_sets = PredictiveParameters(data_chunk, gpu_properties, autotuning_properties, max_performances) pars_to_get = derived_parameters["common"] + derived_parameters[ name_algo] new_data = parameter_sets.get_features(pars_to_get) # Write derived parameters derived_training_data_filename = os.path.join( tunedir, "training_data_{}_{}.csv".format(name_algo, chunk_count - 1)) new_data[pars_to_get].to_csv(derived_training_data_filename, index=False) print("\tWrote", derived_training_data_filename) # =============================================================================== print("\nRead all raw and computed all derived data") # Print header lines & merge instructions print("\n$ # Merge instructions:") print("$ cd {}".format(tunedir)) for name_algo, kernel_algo in kernel_algorithm.items(): # Print header line derived_training_data_filename_base = "training_data_{}_{}.csv" derived_training_data_filename_chunk = derived_training_data_filename_base.format( name_algo, 0) with open(derived_training_data_filename_chunk, "r") as f: header_line = f.readline() derived_training_data_filename = "training_data_{}.csv".format( name_algo) with open(derived_training_data_filename, "w") as f: f.write(header_line) print("$ # Wrote header line to {}".format( derived_training_data_filename)) # Print merge instructions print("$ # Wrote header line to {}".format( derived_training_data_filename)) print("$ # Append training data chunks to {} by running:".format( derived_training_data_filename)) derived_training_data_filename_wildcard = derived_training_data_filename_base.format( name_algo, "*") print("$ tail -n +2 -q {to_merge} >> {training_data_file}".format( to_merge=derived_training_data_filename_wildcard, training_data_file=derived_training_data_filename, )) # Print max performances max_performances_per_mnk_file = os.path.join(tunedir, "max_performances.json") with open(max_performances_per_mnk_file, "w") as f: json.dump(max_performances_per_mnk, f) print("\nWrote maximum performances to:\n", max_performances_per_mnk_file) # Print baseline baseline_performances_per_algo_per_mnk_file = os.path.join( tunedir, "baseline_performances_by_algo.json") with open(baseline_performances_per_algo_per_mnk_file, "w") as f: json.dump(baseline_performances_per_algo_per_mnk, f) print( "\nWrote baseline performances to:\n", baseline_performances_per_algo_per_mnk_file, )
def collect_training_data( kernel_folders, kernel_folder_pattern, gpu_properties, autotuning_properties, max_performances_per_mnk, baseline_performances_per_algo_per_mnk, ): """ Collect training data from log files resulting of autotuning """ n_kernels = len(kernel_folders) # For each folder: for i, kernel_folder in enumerate(kernel_folders): print("\nProcess folder {} ({}/{:,})".format(kernel_folder, i + 1, n_kernels)) # Find (m, n, k) match = kernel_folder_pattern.search(kernel_folder).groups() m = int(match[0]) n = int(match[1]) k = int(match[2]) # =============================================================================== # Collect info from log files data = read_log_file(kernel_folder, m, n, k) # Collect max performances per (m, n, k) max_performances = get_max_performances_per_mnk(data) max_performances_per_mnk.update( dict( zip(to_string(*max_performances.keys()), max_performances.values()))) # =============================================================================== # Write parameters to CSV for name_algo, kernel_algo in kernel_algorithm.items(): # if applicable to this mnk if name_algo in data["algorithm"].values: # Get the data corresponding to this algorithm data_algo = data[data["algorithm"] == name_algo] # Collect baseline performances per algo, per (m, n, k) baseline_performances_algo = get_baseline_performances_per_mnk( data_algo, name_algo, gpu_properties, autotuning_properties) baseline_performances_per_algo_per_mnk[name_algo].update( dict( zip( to_string(*baseline_performances_algo.keys()), baseline_performances_algo.values(), ))) # Does collected csv file exist already? raw_parameters_file_name = os.path.join( kernel_folder, "raw_training_data_" + to_string(m, n, k) + "_" + name_algo + ".csv", ) derived_parameters_file_name = os.path.join( kernel_folder, "training_data_" + to_string(m, n, k) + "_" + name_algo + ".csv", ) if os.path.exists(raw_parameters_file_name): print("\tFound csv file:", raw_parameters_file_name, ", skipping ...") else: # Write raw parameters pars_to_get = kernel_algo.launch_parameters + [ "perf (Gflop/s)" ] data_algo[pars_to_get].to_csv(raw_parameters_file_name, index=False) print("\tWrote", raw_parameters_file_name) if os.path.exists(derived_parameters_file_name): print( "\tFound csv file:", derived_parameters_file_name, ", skipping ...", ) else: # Compute derived parameters parameter_sets = PredictiveParameters( data_algo, gpu_properties, autotuning_properties, max_performances, ) pars_to_get = (derived_parameters["common"] + derived_parameters[name_algo]) new_df = parameter_sets.get_features(pars_to_get) data_algo.merge(new_df) # Write derived parameters data_algo[pars_to_get].to_csv(derived_parameters_file_name, index=False) print("\tWrote", derived_parameters_file_name)