Exemple #1
0
def train_dynamics(
        config,
        train_dir,  # str: directory to save output
):

    # set random seed for reproduction
    set_seed(config['train']['random_seed'])

    st_epoch = config['train'][
        'resume_epoch'] if config['train']['resume_epoch'] > 0 else 0
    tee = Tee(os.path.join(train_dir, 'train_st_epoch_%d.log' % st_epoch), 'w')

    tensorboard_dir = os.path.join(train_dir, "tensorboard")
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    writer = SummaryWriter(log_dir=tensorboard_dir)

    # save the config
    save_yaml(config, os.path.join(train_dir, "config.yaml"))

    print(config)

    # load the data
    episodes = load_episodes_from_config(config)

    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(
        config)

    datasets = {}
    dataloaders = {}
    data_n_batches = {}
    for phase in ['train', 'valid']:
        print("Loading data for %s" % phase)
        datasets[phase] = MultiEpisodeDataset(
            config,
            action_function=action_function,
            observation_function=observation_function,
            episodes=episodes,
            phase=phase)

        dataloaders[phase] = DataLoader(
            datasets[phase],
            batch_size=config['train']['batch_size'],
            shuffle=True if phase == 'train' else False,
            num_workers=config['train']['num_workers'])

        data_n_batches[phase] = len(dataloaders[phase])

    use_gpu = torch.cuda.is_available()

    # compute normalization parameters if not starting from pre-trained network . . .
    '''
    define model for dynamics prediction
    '''
    model_dy = None

    if config['train']['resume_epoch'] >= 0:
        # if resume from a pretrained checkpoint
        state_dict_path = os.path.join(
            train_dir, 'net_dy_epoch_%d_iter_%d_state_dict.pth' %
            (config['train']['resume_epoch'], config['train']['resume_iter']))
        print("Loading saved ckp from %s" % state_dict_path)

        # why is this needed if we already do torch.load???
        model_dy.load_state_dict(torch.load(state_dict_path))

        # don't we also need to load optimizer state from pre-trained???
    else:
        # not starting from pre-trained create the network and compute the
        # normalization parameters
        model_dy = DynaNetMLP(config)

        # compute normalization params
        stats = datasets["train"].compute_dataset_statistics()

        obs_mean = stats['observations']['mean']
        obs_std = stats['observations']['std']
        observations_normalizer = DataNormalizer(obs_mean, obs_std)

        action_mean = stats['actions']['mean']
        action_std = stats['actions']['std']
        actions_normalizer = DataNormalizer(action_mean, action_std)

        model_dy.action_normalizer = actions_normalizer
        model_dy.state_normalizer = observations_normalizer

    print("model_dy #params: %d" % count_trainable_parameters(model_dy))

    # criterion
    criterionMSE = nn.MSELoss()

    # optimizer
    params = model_dy.parameters()
    optimizer = optim.Adam(params,
                           lr=config['train']['lr'],
                           betas=(config['train']['adam_beta1'], 0.999))
    scheduler = ReduceLROnPlateau(optimizer,
                                  'min',
                                  factor=0.9,
                                  patience=10,
                                  verbose=True)

    if use_gpu:
        model_dy = model_dy.cuda()

    best_valid_loss = np.inf
    global_iteration = 0

    epoch_counter_external = 0

    try:
        for epoch in range(st_epoch, config['train']['n_epoch']):
            phases = ['train', 'valid']
            epoch_counter_external = epoch

            writer.add_scalar("Training Params/epoch", epoch, global_iteration)
            for phase in phases:
                model_dy.train(phase == 'train')

                meter_loss_rmse = AverageMeter()

                # bar = ProgressBar(max_value=data_n_batches[phase])
                loader = dataloaders[phase]

                for i, data in enumerate(loader):

                    global_iteration += 1

                    with torch.set_grad_enabled(phase == 'train'):
                        n_his, n_roll = config['train']['n_history'], config[
                            'train']['n_rollout']
                        n_samples = n_his + n_roll

                        if config['env']['type'] in ['PusherSlider']:
                            states = data['observations']
                            actions = data['actions']

                            if use_gpu:
                                states = states.cuda()
                                actions = actions.cuda()

                            # states, actions = data
                            assert states.size(1) == n_samples

                            # normalize states and actions once for entire rollout
                            states = model_dy.state_normalizer.normalize(
                                states)
                            actions = model_dy.action_normalizer.normalize(
                                actions)

                            B = states.size(0)
                            loss_mse = 0.

                            # state_cur: B x n_his x state_dim
                            state_cur = states[:, :n_his]

                            for j in range(n_roll):

                                state_des = states[:, n_his + j]

                                # action_cur: B x n_his x action_dim
                                action_cur = actions[:, j:j +
                                                     n_his] if actions is not None else None

                                # state_pred: B x state_dim
                                # state_cur: B x n_his x state_dim
                                # state_pred: B x state_dim
                                state_pred = model_dy(state_cur, action_cur)

                                loss_mse_cur = criterionMSE(
                                    state_pred, state_des)
                                loss_mse += loss_mse_cur / n_roll

                                # update state_cur
                                # state_pred.unsqueeze(1): B x 1 x state_dim
                                state_cur = torch.cat([
                                    state_cur[:, 1:],
                                    state_pred.unsqueeze(1)
                                ], 1)

                            meter_loss_rmse.update(np.sqrt(loss_mse.item()), B)

                    if phase == 'train':
                        optimizer.zero_grad()
                        loss_mse.backward()
                        optimizer.step()

                    if i % config['train']['log_per_iter'] == 0:
                        log = '%s [%d/%d][%d/%d] LR: %.6f' % (
                            phase, epoch, config['train']['n_epoch'], i,
                            data_n_batches[phase], get_lr(optimizer))
                        log += ', rmse: %.6f (%.6f)' % (np.sqrt(
                            loss_mse.item()), meter_loss_rmse.avg)

                        print(log)

                        # log data to tensorboard
                        # only do it once we have reached 500 iterations
                        if global_iteration > 500:
                            writer.add_scalar("Params/learning rate",
                                              get_lr(optimizer),
                                              global_iteration)
                            writer.add_scalar("Loss/train", loss_mse.item(),
                                              global_iteration)
                            writer.add_scalar("RMSE average loss/train",
                                              meter_loss_rmse.avg,
                                              global_iteration)

                    if phase == 'train' and i % config['train'][
                            'ckp_per_iter'] == 0:
                        save_model(
                            model_dy, '%s/net_dy_epoch_%d_iter_%d' %
                            (train_dir, epoch, i))

                log = '%s [%d/%d] Loss: %.6f, Best valid: %.6f' % (
                    phase, epoch, config['train']['n_epoch'],
                    meter_loss_rmse.avg, best_valid_loss)
                print(log)

                if phase == 'valid':
                    scheduler.step(meter_loss_rmse.avg)
                    writer.add_scalar("RMSE average loss/valid",
                                      meter_loss_rmse.avg, global_iteration)
                    if meter_loss_rmse.avg < best_valid_loss:
                        best_valid_loss = meter_loss_rmse.avg
                        save_model(model_dy, '%s/net_best_dy' % (train_dir))

                writer.flush()  # flush SummaryWriter events to disk

    except KeyboardInterrupt:
        # save network if we have a keyboard interrupt
        save_model(
            model_dy, '%s/net_dy_epoch_%d_keyboard_interrupt' %
            (train_dir, epoch_counter_external))
        writer.flush()  # flush SummaryWriter events to disk
Exemple #2
0
loader = pil_loader

trans_to_tensor = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])


'''
store results
'''
os.system('mkdir -p ' + args.evalf)

log_path = os.path.join(args.evalf, 'log.txt')
tee = Tee(log_path, 'w')


def evaluate(roll_idx, video=True, image=True):

    eval_path = os.path.join(args.evalf, str(roll_idx))

    n_split = 3
    split = 4

    if image:
        os.system('mkdir -p ' + eval_path)
        print('Save images to %s' % eval_path)

    if video:
        video_path = eval_path + '.avi'
Exemple #3
0
def train_dynamics(config,
                   train_dir, # str: directory to save output
                   multi_episode_dict, # multi_episode_dict
                   ):

    use_precomputed_keypoints = config['dataset']['visual_observation']['enabled'] and config['dataset']['visual_observation']['descriptor_keypoints']

    # set random seed for reproduction
    set_seed(config['train']['random_seed'])

    st_epoch = config['train']['resume_epoch'] if config['train']['resume_epoch'] > 0 else 0
    tee = Tee(os.path.join(train_dir, 'train_st_epoch_%d.log' % st_epoch), 'w')

    tensorboard_dir = os.path.join(train_dir, "tensorboard")
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    writer = SummaryWriter(log_dir=tensorboard_dir)

    # save the config
    save_yaml(config, os.path.join(train_dir, "config.yaml"))


    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(config)

    datasets = {}
    dataloaders = {}
    data_n_batches = {}
    for phase in ['train', 'valid']:
        print("Loading data for %s" % phase)
        datasets[phase] = MultiEpisodeDataset(config,
                                              action_function=action_function,
                                              observation_function=observation_function,
                                              episodes=multi_episode_dict,
                                              phase=phase)

        dataloaders[phase] = DataLoader(
            datasets[phase], batch_size=config['train']['batch_size'],
            shuffle=True if phase == 'train' else False,
            num_workers=config['train']['num_workers'], drop_last=True)

        data_n_batches[phase] = len(dataloaders[phase])

    use_gpu = torch.cuda.is_available()

    # compute normalization parameters if not starting from pre-trained network . . .


    '''
    define model for dynamics prediction
    '''

    model_dy = build_visual_dynamics_model(config)
    K = config['vision_net']['num_ref_descriptors']

    print("model_dy.vision_net._reference_descriptors.shape", model_dy.vision_net._ref_descriptors.shape)
    print("model_dy.vision_net.descriptor_dim", model_dy.vision_net.descriptor_dim)
    print("model_dy #params: %d" % count_trainable_parameters(model_dy))

    camera_name = config['vision_net']['camera_name']
    W = config['env']['rgbd_sensors']['sensor_list'][camera_name]['width']
    H = config['env']['rgbd_sensors']['sensor_list'][camera_name]['height']
    diag = np.sqrt(W**2 + H**2) # use this to scale the loss

    # sample reference descriptors unless using precomputed keypoints
    if not use_precomputed_keypoints:
        # sample reference descriptors
        episode_names = list(datasets["train"].episode_dict.keys())
        episode_names.sort()
        episode_name = episode_names[0]
        episode = datasets["train"].episode_dict[episode_name]
        episode_idx = 0
        camera_name = config["vision_net"]["camera_name"]
        image_data = episode.get_image_data(camera_name, episode_idx)
        des_img = torch.Tensor(image_data['descriptor'])
        mask_img = torch.Tensor(image_data['mask'])
        ref_descriptor_dict = sample_descriptors(des_img,
                                                 mask_img,
                                                 config['vision_net']['num_ref_descriptors'])



        model_dy.vision_net._ref_descriptors.data = ref_descriptor_dict['descriptors']
        model_dy.vision_net.reference_image = image_data['rgb']
        model_dy.vision_net.reference_indices = ref_descriptor_dict['indices']
    else:
        metadata_file = os.path.join(get_data_root(), config['dataset']['descriptor_keypoints_dir'], 'metadata.p')
        descriptor_metadata = load_pickle(metadata_file)

        # [32, 2]
        ref_descriptors = torch.Tensor(descriptor_metadata['ref_descriptors'])

        # [K, 2]
        ref_descriptors = ref_descriptors[:K]
        model_dy.vision_net._ref_descriptors.data = ref_descriptors
        model_dy.vision_net._ref_descriptors_metadata = descriptor_metadata

        # this is just a sanity check
        assert model_dy.vision_net.num_ref_descriptors == K

    print("reference_descriptors", model_dy.vision_net._ref_descriptors)

    # criterion
    criterionMSE = nn.MSELoss()
    l1Loss = nn.L1Loss()

    # optimizer
    params = model_dy.parameters()
    lr = float(config['train']['lr'])
    optimizer = optim.Adam(params, lr=lr, betas=(config['train']['adam_beta1'], 0.999))

    # setup scheduler
    sc = config['train']['lr_scheduler']
    scheduler = ReduceLROnPlateau(optimizer,
                                  mode='min',
                                  factor=sc['factor'],
                                  patience=sc['patience'],
                                  threshold_mode=sc['threshold_mode'],
                                  cooldown= sc['cooldown'],
                                  verbose=True)

    if use_gpu:
        print("using gpu")
        model_dy = model_dy.cuda()

    print("model_dy.vision_net._ref_descriptors.device", model_dy.vision_net._ref_descriptors.device)
    print("model_dy.vision_net #params: %d" %(count_trainable_parameters(model_dy.vision_net)))


    best_valid_loss = np.inf
    global_iteration = 0
    epoch_counter_external = 0

    try:
        for epoch in range(st_epoch, config['train']['n_epoch']):
            phases = ['train', 'valid']
            epoch_counter_external = epoch

            writer.add_scalar("Training Params/epoch", epoch, global_iteration)
            for phase in phases:
                model_dy.train(phase == 'train')

                meter_loss_rmse = AverageMeter()
                step_duration_meter = AverageMeter()


                # bar = ProgressBar(max_value=data_n_batches[phase])
                loader = dataloaders[phase]

                for i, data in enumerate(loader):

                    step_start_time = time.time()

                    global_iteration += 1

                    with torch.set_grad_enabled(phase == 'train'):
                        n_his, n_roll = config['train']['n_history'], config['train']['n_rollout']
                        n_samples = n_his + n_roll

                        if DEBUG:
                            print("global iteration: %d" %(global_iteration))


                        # visual_observations = data['visual_observations']
                        visual_observations_list = data['visual_observations_list']
                        observations = data['observations']
                        actions = data['actions']

                        if use_gpu:
                            observations = observations.cuda()
                            actions = actions.cuda()

                        # states, actions = data
                        assert actions.size(1) == n_samples

                        B = actions.size(0)
                        loss_mse = 0.


                        # compute the output of the visual model for all timesteps
                        visual_model_output_list = []
                        for visual_obs in visual_observations_list:
                            # visual_obs is a dict containing observation for a single
                            # time step (of course across a batch however)
                            # visual_obs[<camera_name>]['rgb_tensor'] has shape [B, 3, H, W]

                            # probably need to cast input to cuda
                            dynamics_net_input = None
                            if use_precomputed_keypoints:
                                # note precomputed descriptors stored on disk are of size
                                # K = 32. We need to trim it down to the appropriate size
                                # [B, K_disk, 2] where K_disk is num keypoints on disk
                                keypoints = visual_obs[camera_name]['descriptor_keypoints']


                                # [B, 32, 2] where K is num keypoints
                                keypoints = keypoints[:,:K]

                                if DEBUG:
                                    print("keypoints.shape", keypoints.shape)

                                dynamics_net_input = keypoints.flatten(start_dim=1)
                            else:
                                out_dict = model_dy.vision_net.forward(visual_obs)

                                # [B, vision_model_out_dim]
                                dynamics_net_input = out_dict['dynamics_net_input']

                            visual_model_output_list.append(dynamics_net_input)

                        # concatenate this into a tensor
                        # [B, n_samples, vision_model_out_dim]
                        visual_model_output = torch.stack(visual_model_output_list, dim=1)

                        # cast this to float so it can be concatenated below
                        visual_model_output = visual_model_output.type_as(observations)

                        if DEBUG:
                            print('visual_model_output.shape', visual_model_output.shape)
                            print("observations.shape", observations.shape)
                            print("actions.shape", actions.shape)

                        # states is gotten by concatenating visual_observations and observations
                        # [B, n_samples, vision_model_out_dim + obs_dim]
                        states = torch.cat((visual_model_output, observations), dim=-1)

                        # state_cur: B x n_his x state_dim
                        state_cur = states[:, :n_his]

                        if DEBUG:
                            print("states.shape", states.shape)

                        for j in range(n_roll):

                            if DEBUG:
                                print("n_roll j: %d" %(j))

                            state_des = states[:, n_his + j]

                            # action_cur: B x n_his x action_dim
                            action_cur = actions[:, j : j + n_his] if actions is not None else None

                            # state_pred: B x state_dim
                            # state_pred: B x state_dim
                            input = {'observation': state_cur,
                                     'action': action_cur,
                                     }

                            if DEBUG:
                                print("state_cur.shape", state_cur.shape)
                                print("action_cur.shape", action_cur.shape)

                            state_pred = model_dy.dynamics_net(input)

                            # normalize by diag to ensure the loss is in [0,1] range
                            loss_mse_cur = criterionMSE(state_pred/diag, state_des/diag)
                            loss_mse += loss_mse_cur / n_roll

                            # l1Loss
                            loss_l1 = l1Loss(state_pred, state_des)

                            # update state_cur
                            # state_pred.unsqueeze(1): B x 1 x state_dim
                            # state_cur: B x n_his x state_dim
                            state_cur = torch.cat([state_cur[:, 1:], state_pred.unsqueeze(1)], 1)

                            meter_loss_rmse.update(np.sqrt(loss_mse.item()), B)

                    step_duration_meter.update(time.time() - step_start_time)
                    if phase == 'train':
                        optimizer.zero_grad()
                        loss_mse.backward()
                        optimizer.step()

                    if (i % config['train']['log_per_iter'] == 0) or (global_iteration % config['train']['log_per_iter'] == 0):
                        log = '%s [%d/%d][%d/%d] LR: %.6f' % (
                            phase, epoch, config['train']['n_epoch'], i, data_n_batches[phase],
                            get_lr(optimizer))
                        log += ', rmse: %.6f (%.6f)' % (
                            np.sqrt(loss_mse.item()), meter_loss_rmse.avg)

                        log += ', step time %.6f' %(step_duration_meter.avg)
                        step_duration_meter.reset()


                        print(log)

                        # log data to tensorboard
                        # only do it once we have reached 100 iterations
                        if global_iteration > 100:
                            writer.add_scalar("Params/learning rate", get_lr(optimizer), global_iteration)
                            writer.add_scalar("Loss_MSE/%s" %(phase), loss_mse.item(), global_iteration)
                            writer.add_scalar("L1/%s" %(phase), loss_l1.item(), global_iteration)
                            writer.add_scalar("L1_fraction/%s" %(phase), loss_l1.item()/diag, global_iteration)
                            writer.add_scalar("RMSE average loss/%s" %(phase), meter_loss_rmse.avg, global_iteration)

                    if phase == 'train' and i % config['train']['ckp_per_iter'] == 0:
                        save_model(model_dy, '%s/net_dy_epoch_%d_iter_%d' % (train_dir, epoch, i))



                log = '%s [%d/%d] Loss: %.6f, Best valid: %.6f' % (
                    phase, epoch, config['train']['n_epoch'], meter_loss_rmse.avg, best_valid_loss)
                print(log)

                if phase == 'valid':
                    if config['train']['lr_scheduler']['enabled']:
                        scheduler.step(meter_loss_rmse.avg)

                    # print("\nPhase == valid")
                    # print("meter_loss_rmse.avg", meter_loss_rmse.avg)
                    # print("best_valid_loss", best_valid_loss)
                    if meter_loss_rmse.avg < best_valid_loss:
                        best_valid_loss = meter_loss_rmse.avg
                        save_model(model_dy, '%s/net_best_dy' % (train_dir))

                writer.flush() # flush SummaryWriter events to disk

    except KeyboardInterrupt:
        # save network if we have a keyboard interrupt
        save_model(model_dy, '%s/net_dy_epoch_%d_keyboard_interrupt' % (train_dir, epoch_counter_external))
        writer.flush() # flush SummaryWriter events to disk
Exemple #4
0
def train_dynamics(
    config,
    train_dir,  # str: directory to save output
    multi_episode_dict=None,
    spatial_descriptors_idx=None,
    metadata=None,
    spatial_descriptors_data=None,
):

    assert multi_episode_dict is not None
    # assert spatial_descriptors_idx is not None

    # set random seed for reproduction
    set_seed(config['train']['random_seed'])

    st_epoch = config['train'][
        'resume_epoch'] if config['train']['resume_epoch'] > 0 else 0
    tee = Tee(os.path.join(train_dir, 'train_st_epoch_%d.log' % st_epoch), 'w')

    tensorboard_dir = os.path.join(train_dir, "tensorboard")
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    writer = SummaryWriter(log_dir=tensorboard_dir)

    # save the config
    save_yaml(config, os.path.join(train_dir, "config.yaml"))

    if metadata is not None:
        save_pickle(metadata, os.path.join(train_dir, 'metadata.p'))

    if spatial_descriptors_data is not None:
        save_pickle(spatial_descriptors_data,
                    os.path.join(train_dir, 'spatial_descriptors.p'))

    training_stats = dict()
    training_stats_file = os.path.join(train_dir, 'training_stats.yaml')

    # load the data

    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(
        config)

    datasets = {}
    dataloaders = {}
    data_n_batches = {}
    for phase in ['train', 'valid']:
        print("Loading data for %s" % phase)
        datasets[phase] = MultiEpisodeDataset(
            config,
            action_function=action_function,
            observation_function=observation_function,
            episodes=multi_episode_dict,
            phase=phase)

        dataloaders[phase] = DataLoader(
            datasets[phase],
            batch_size=config['train']['batch_size'],
            shuffle=True if phase == 'train' else False,
            num_workers=config['train']['num_workers'],
            drop_last=True)

        data_n_batches[phase] = len(dataloaders[phase])

    use_gpu = torch.cuda.is_available()

    # compute normalization parameters if not starting from pre-trained network . . .
    '''
    Build model for dynamics prediction
    '''
    model_dy = build_dynamics_model(config)
    camera_name = config['vision_net']['camera_name']

    # criterion
    criterionMSE = nn.MSELoss()
    l1Loss = nn.L1Loss()
    smoothL1 = nn.SmoothL1Loss()

    # optimizer
    params = model_dy.parameters()
    lr = float(config['train']['lr'])
    optimizer = optim.Adam(params,
                           lr=lr,
                           betas=(config['train']['adam_beta1'], 0.999))

    # setup scheduler
    sc = config['train']['lr_scheduler']
    scheduler = None

    if config['train']['lr_scheduler']['enabled']:
        if config['train']['lr_scheduler']['type'] == "ReduceLROnPlateau":
            scheduler = ReduceLROnPlateau(optimizer,
                                          mode='min',
                                          factor=sc['factor'],
                                          patience=sc['patience'],
                                          threshold_mode=sc['threshold_mode'],
                                          cooldown=sc['cooldown'],
                                          verbose=True)
        elif config['train']['lr_scheduler']['type'] == "StepLR":
            step_size = config['train']['lr_scheduler']['step_size']
            gamma = config['train']['lr_scheduler']['gamma']
            scheduler = StepLR(optimizer, step_size=step_size, gamma=gamma)
        else:
            raise ValueError("unknown scheduler type: %s" %
                             (config['train']['lr_scheduler']['type']))

    if use_gpu:
        print("using gpu")
        model_dy = model_dy.cuda()

    # print("model_dy.vision_net._ref_descriptors.device", model_dy.vision_net._ref_descriptors.device)
    # print("model_dy.vision_net #params: %d" %(count_trainable_parameters(model_dy.vision_net)))

    best_valid_loss = np.inf
    valid_loss_type = config['train']['valid_loss_type']
    global_iteration = 0
    counters = {'train': 0, 'valid': 0}
    epoch_counter_external = 0
    loss = 0

    index_map = get_object_and_robot_state_indices(config)
    object_state_indices = torch.LongTensor(index_map['object_indices'])
    robot_state_indices = torch.LongTensor(index_map['robot_indices'])

    object_state_shape = config['dataset']['object_state_shape']

    try:
        for epoch in range(st_epoch, config['train']['n_epoch']):
            phases = ['train', 'valid']
            epoch_counter_external = epoch

            writer.add_scalar("Training Params/epoch", epoch, global_iteration)
            for phase in phases:

                # only validate at a certain frequency
                if (phase == "valid") and (
                    (epoch % config['train']['valid_frequency']) != 0):
                    continue

                model_dy.train(phase == 'train')

                average_meter_container = dict()

                step_duration_meter = AverageMeter()

                # bar = ProgressBar(max_value=data_n_batches[phase])
                loader = dataloaders[phase]

                for i, data in enumerate(loader):

                    loss_container = dict()  # store the losses for this step

                    step_start_time = time.time()

                    global_iteration += 1
                    counters[phase] += 1

                    with torch.set_grad_enabled(phase == 'train'):
                        n_his, n_roll = config['train']['n_history'], config[
                            'train']['n_rollout']
                        n_samples = n_his + n_roll

                        if DEBUG:
                            print("global iteration: %d" % (global_iteration))
                            print("n_samples", n_samples)

                        # [B, n_samples, obs_dim]
                        observations = data['observations']
                        visual_observations_list = data[
                            'visual_observations_list']

                        # [B, n_samples, action_dim]
                        actions = data['actions']
                        B = actions.shape[0]

                        if use_gpu:
                            observations = observations.cuda()
                            actions = actions.cuda()

                        # compile the visual observations
                        # compute the output of the visual model for all timesteps
                        visual_model_output_list = []
                        for visual_obs in visual_observations_list:
                            # visual_obs is a dict containing observation for a single
                            # time step (of course across a batch however)
                            # visual_obs[<camera_name>]['rgb_tensor'] has shape [B, 3, H, W]

                            # probably need to cast input to cuda
                            # [B, -1, 3]
                            keypoints = visual_obs[camera_name][
                                'descriptor_keypoints_3d_world_frame']

                            # [B, K, 3] where K = len(spatial_descriptors_idx)
                            keypoints = keypoints[:, spatial_descriptors_idx]

                            B, K, _ = keypoints.shape

                            # [B, K*3]
                            keypoints_reshape = keypoints.reshape([B, K * 3])

                            if DEBUG:
                                print("keypoints.shape", keypoints.shape)
                                print("keypoints_reshape.shape",
                                      keypoints_reshape.shape)
                            visual_model_output_list.append(keypoints_reshape)

                        visual_model_output = None
                        if len(visual_model_output_list) > 0:
                            # concatenate this into a tensor
                            # [B, n_samples, vision_model_out_dim]
                            visual_model_output = torch.stack(
                                visual_model_output_list, dim=1)

                        else:
                            visual_model_output = torch.Tensor(
                            )  # empty tensor

                        # states, actions = data
                        assert actions.shape[1] == n_samples

                        # cast this to float so it can be concatenated below
                        visual_model_output = visual_model_output.type_as(
                            observations)

                        # we don't have any visual observations, so states are observations
                        # states is gotten by concatenating visual_observations and observations
                        # [B, n_samples, vision_model_out_dim + obs_dim]
                        states = torch.cat((visual_model_output, observations),
                                           dim=-1)

                        # state_cur: B x n_his x state_dim
                        # state_cur = states[:, :n_his]

                        # [B, n_his, state_dim]
                        state_init = states[:, :n_his]

                        # We want to rollout n_roll steps
                        # actions = [B, n_his + n_roll, -1]
                        # so we want action_seq.shape = [B, n_roll, -1]
                        action_start_idx = 0
                        action_end_idx = n_his + n_roll - 1
                        action_seq = actions[:, action_start_idx:
                                             action_end_idx, :]

                        if DEBUG:
                            print("states.shape", states.shape)
                            print("state_init.shape", state_init.shape)
                            print("actions.shape", actions.shape)
                            print("action_seq.shape", action_seq.shape)

                        # try using models_dy.rollout_model instead of doing this manually
                        rollout_data = rollout_model(state_init=state_init,
                                                     action_seq=action_seq,
                                                     dynamics_net=model_dy,
                                                     compute_debug_data=False)

                        # [B, n_roll, state_dim]
                        state_rollout_pred = rollout_data['state_pred']

                        # [B, n_roll, state_dim]
                        state_rollout_gt = states[:, n_his:]

                        if DEBUG:
                            print("state_rollout_gt.shape",
                                  state_rollout_gt.shape)
                            print("state_rollout_pred.shape",
                                  state_rollout_pred.shape)

                        # the loss function is between
                        # [B, n_roll, state_dim]
                        state_pred_err = state_rollout_pred - state_rollout_gt

                        # [B, n_roll, object_state_dim]
                        object_state_err = state_pred_err[:, :,
                                                          object_state_indices]
                        B, n_roll, object_state_dim = object_state_err.shape

                        # [B, n_roll, *object_state_shape]
                        object_state_err_reshape = object_state_err.reshape(
                            [B, n_roll, *object_state_shape])

                        # num weights
                        J = object_state_err_reshape.shape[2]
                        weights = model_dy.weight_matrix

                        assert len(
                            weights) == J, "len(weights) = %d, but J = %d" % (
                                len(weights), J)

                        # loss mse object, note the use of broadcasting semantics
                        # [B, n_roll]
                        object_state_loss_mse = weights * torch.pow(
                            object_state_err_reshape, 2).sum(dim=-1)
                        object_state_loss_mse = object_state_loss_mse.mean()

                        l2_object = (weights * torch.norm(
                            object_state_err_reshape, dim=-1)).mean()

                        l2_object_final_step = (weights * torch.norm(
                            object_state_err_reshape[:, -1], dim=-1)).mean()

                        # [B, n_roll, robot_state_dim]
                        robot_state_err = state_pred_err[:, :,
                                                         robot_state_indices]
                        robot_state_loss_mse = torch.pow(robot_state_err,
                                                         2).sum(dim=-1).mean()

                        loss_container[
                            'object_state_loss_mse'] = object_state_loss_mse
                        loss_container[
                            'robot_state_loss_mse'] = robot_state_loss_mse
                        loss_container['l2_object'] = l2_object
                        loss_container[
                            'l2_object_final_step'] = l2_object_final_step

                        # total loss
                        loss = object_state_loss_mse + robot_state_loss_mse
                        loss_container['loss'] = loss

                        for key, val in loss_container.items():
                            if not key in average_meter_container:
                                average_meter_container[key] = AverageMeter()

                            average_meter_container[key].update(val.item(), B)

                    step_duration_meter.update(time.time() - step_start_time)

                    if phase == 'train':
                        optimizer.zero_grad()
                        loss.backward()
                        optimizer.step()

                    if (i % config['train']['log_per_iter']
                            == 0) or (global_iteration %
                                      config['train']['log_per_iter'] == 0):
                        log = '%s [%d/%d][%d/%d] LR: %.6f' % (
                            phase, epoch, config['train']['n_epoch'], i,
                            data_n_batches[phase], get_lr(optimizer))

                        # log += ', l2: %.6f' % (loss_container['l2'].item())
                        # log += ', l2_final_step: %.6f' %(loss_container['l2_final_step'].item())

                        log += ', step time %.6f' % (step_duration_meter.avg)
                        step_duration_meter.reset()

                        print(log)

                        # log data to tensorboard
                        # only do it once we have reached 100 iterations
                        if global_iteration > 100:
                            writer.add_scalar("Params/learning rate",
                                              get_lr(optimizer),
                                              global_iteration)
                            writer.add_scalar("Loss_train/%s" % (phase),
                                              loss.item(), global_iteration)

                            for loss_type, loss_obj in loss_container.items():
                                plot_name = "Loss/%s/%s" % (loss_type, phase)
                                writer.add_scalar(plot_name, loss_obj.item(),
                                                  counters[phase])

                            # only plot the weights if we are in the train phase . . . .
                            if phase == "train":
                                for i in range(len(weights)):
                                    plot_name = "Weights/%d" % (i)
                                    writer.add_scalar(plot_name,
                                                      weights[i].item(),
                                                      counters[phase])

                    if phase == 'train' and global_iteration % config['train'][
                            'ckp_per_iter'] == 0:
                        save_model(
                            model_dy, '%s/net_dy_epoch_%d_iter_%d' %
                            (train_dir, epoch, i))

                log = '%s [%d/%d] Loss: %.6f, Best valid: %.6f' % (
                    phase, epoch, config['train']['n_epoch'],
                    average_meter_container[valid_loss_type].avg,
                    best_valid_loss)
                print(log)

                # record all average_meter losses
                for key, meter in average_meter_container.items():
                    writer.add_scalar("AvgMeter/%s/%s" % (key, phase),
                                      meter.avg, epoch)

                if phase == "train":
                    if (scheduler is not None) and (
                            config['train']['lr_scheduler']['type']
                            == "StepLR"):
                        scheduler.step()

                if phase == 'valid':
                    if (scheduler is not None) and (
                            config['train']['lr_scheduler']['type']
                            == "ReduceLROnPlateau"):
                        scheduler.step(
                            average_meter_container[valid_loss_type].avg)

                    if average_meter_container[
                            valid_loss_type].avg < best_valid_loss:
                        best_valid_loss = average_meter_container[
                            valid_loss_type].avg
                        training_stats['epoch'] = epoch
                        training_stats['global_iteration'] = counters['valid']
                        save_yaml(training_stats, training_stats_file)
                        save_model(model_dy, '%s/net_best_dy' % (train_dir))

                writer.flush()  # flush SummaryWriter events to disk

    except KeyboardInterrupt:
        # save network if we have a keyboard interrupt
        save_model(
            model_dy, '%s/net_dy_epoch_%d_keyboard_interrupt' %
            (train_dir, epoch_counter_external))
        writer.flush()  # flush SummaryWriter events to disk
def train_dynamics(config, data_path, train_dir):

    # access dict values as attributes
    config = edict(config)

    # set random seed for reproduction
    set_seed(config.train.random_seed)

    st_epoch = config.train.resume_epoch if config.train.resume_epoch > 0 else 0
    tee = Tee(os.path.join(train_dir, 'train_st_epoch_%d.log' % st_epoch), 'w')

    print(config)

    datasets = {}
    dataloaders = {}
    data_n_batches = {}
    for phase in ['train', 'valid']:
        print("Loading data for %s" % phase)
        datasets[phase] = MultiEpisodeDataset(config, data_path, phase=phase)

        dataloaders[phase] = DataLoader(
            datasets[phase], batch_size=config.train.batch_size,
            shuffle=True if phase == 'train' else False,
            num_workers=config.train.num_workers)

        data_n_batches[phase] = len(dataloaders[phase])

    use_gpu = torch.cuda.is_available()


    '''
    define model for dynamics prediction
    '''
    model_dy = DynaNetMLP(config)
    print("model_dy #params: %d" % count_trainable_parameters(model_dy))

    if config.train.resume_epoch >= 0:
        # if resume from a pretrained checkpoint
        model_dy_path = os.path.join(
            train_dir, 'net_dy_epoch_%d_iter_%d.pth' % (
                config.train.resume_epoch, config.train.resume_iter))
        print("Loading saved ckp from %s" % model_dy_path)
        model_dy.load_state_dict(torch.load(model_dy_path))


    # criterion
    criterionMSE = nn.MSELoss()

    # optimizer
    params = model_dy.parameters()
    optimizer = optim.Adam(params, lr=config.train.lr, betas=(config.train.adam_beta1, 0.999))
    scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.9, patience=10, verbose=True)

    if use_gpu:
        model_dy = model_dy.cuda()


    best_valid_loss = np.inf

    for epoch in range(st_epoch, config.train.n_epoch):
        phases = ['train', 'valid']

        for phase in phases:
            model_dy.train(phase == 'train')

            meter_loss_rmse = AverageMeter()

            bar = ProgressBar(max_value=data_n_batches[phase])
            loader = dataloaders[phase]

            for i, data in bar(enumerate(loader)):

                if use_gpu:
                    if isinstance(data, list):
                        data = [d.cuda() for d in data]
                    else:
                        data = data.cuda()

                with torch.set_grad_enabled(phase == 'train'):
                    n_his, n_roll = config.train.n_history, config.train.n_rollout
                    n_samples = n_his + n_roll

                    if config.env.type in ['PusherSlider']:
                        states, actions = data
                        assert states.size(1) == n_samples

                        B = states.size(0)
                        loss_mse = 0.

                        # state_cur: B x n_his x state_dim
                        state_cur = states[:, :n_his]

                        for j in range(n_roll):

                            state_des = states[:, n_his + j]

                            # action_cur: B x n_his x action_dim
                            action_cur = actions[:, j : j + n_his] if actions is not None else None

                            # state_pred: B x state_dim
                            state_pred = model_dy(state_cur, action_cur)

                            loss_mse_cur = criterionMSE(state_pred, state_des)
                            loss_mse += loss_mse_cur / config.train.n_rollout

                            # update state_cur
                            state_cur = torch.cat([state_cur[:, 1:], state_pred.unsqueeze(1)], 1)

                        meter_loss_rmse.update(np.sqrt(loss_mse.item()), B)

                if phase == 'train':
                    optimizer.zero_grad()
                    loss_mse.backward()
                    optimizer.step()

                if i % config.train.log_per_iter == 0:
                    log = '%s [%d/%d][%d/%d] LR: %.6f' % (
                        phase, epoch, config.train.n_epoch, i, data_n_batches[phase],
                        get_lr(optimizer))
                    log += ', rmse: %.6f (%.6f)' % (
                        np.sqrt(loss_mse.item()), meter_loss_rmse.avg)

                    print(log)

                if phase == 'train' and i % config.train.ckp_per_iter == 0:
                    torch.save(model_dy.state_dict(), '%s/net_dy_epoch_%d_iter_%d.pth' % (train_dir, epoch, i))

            log = '%s [%d/%d] Loss: %.6f, Best valid: %.6f' % (
                phase, epoch, config.train.n_epoch, meter_loss_rmse.avg, best_valid_loss)
            print(log)

            if phase == 'valid':
                scheduler.step(meter_loss_rmse.avg)
                if meter_loss_rmse.avg < best_valid_loss:
                    best_valid_loss = meter_loss_rmse.avg
                    torch.save(model_dy.state_dict(), '%s/net_best_dy.pth' % (train_dir))
def train_dynamics(
    config,
    train_dir,  # str: directory to save output
    multi_episode_dict=None,
    visual_observation_function=None,
    metadata=None,
    spatial_descriptors_data=None,
):
    assert multi_episode_dict is not None
    # assert spatial_descriptors_idx is not None

    # set random seed for reproduction
    set_seed(config['train']['random_seed'])

    st_epoch = config['train'][
        'resume_epoch'] if config['train']['resume_epoch'] > 0 else 0
    tee = Tee(os.path.join(train_dir, 'train_st_epoch_%d.log' % st_epoch), 'w')

    tensorboard_dir = os.path.join(train_dir, "tensorboard")
    if not os.path.exists(tensorboard_dir):
        os.makedirs(tensorboard_dir)

    writer = SummaryWriter(log_dir=tensorboard_dir)

    # save the config
    save_yaml(config, os.path.join(train_dir, "config.yaml"))

    if metadata is not None:
        save_pickle(metadata, os.path.join(train_dir, 'metadata.p'))

    if spatial_descriptors_data is not None:
        save_pickle(spatial_descriptors_data,
                    os.path.join(train_dir, 'spatial_descriptors.p'))

    training_stats = dict()
    training_stats_file = os.path.join(train_dir, 'training_stats.yaml')

    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(
        config)

    datasets = {}
    dataloaders = {}
    data_n_batches = {}
    for phase in ['train', 'valid']:
        print("Loading data for %s" % phase)
        datasets[phase] = MultiEpisodeDataset(
            config,
            action_function=action_function,
            observation_function=observation_function,
            episodes=multi_episode_dict,
            phase=phase,
            visual_observation_function=visual_observation_function)

        print("len(datasets[phase])", len(datasets[phase]))
        dataloaders[phase] = DataLoader(
            datasets[phase],
            batch_size=config['train']['batch_size'],
            shuffle=True if phase == 'train' else False,
            num_workers=config['train']['num_workers'],
            drop_last=True)

        data_n_batches[phase] = len(dataloaders[phase])

    use_gpu = torch.cuda.is_available()

    # compute normalization parameters if not starting from pre-trained network . . .

    if False:
        dataset = datasets["train"]
        data = dataset[0]
        print("data['observations_combined'].shape",
              data['observations_combined'].shape)
        print("data.keys()", data.keys())

        print("data['observations_combined']",
              data['observations_combined'][0])
        print("data['observations_combined'].shape",
              data['observations_combined'].shape)
        print("data['actions'].shape", data['actions'].shape)
        print("data['actions']\n", data['actions'])
        quit()
    '''
    Build model for dynamics prediction
    '''
    model_dy = build_dynamics_model(config)
    if config['dynamics_net'] == "mlp_weight_matrix":
        raise ValueError("can't use weight matrix with standard setup")

    # criterion
    criterionMSE = nn.MSELoss()
    l1Loss = nn.L1Loss()
    smoothL1 = nn.SmoothL1Loss()

    # optimizer
    params = model_dy.parameters()
    lr = float(config['train']['lr'])
    optimizer = optim.Adam(params,
                           lr=lr,
                           betas=(config['train']['adam_beta1'], 0.999))

    # setup scheduler
    sc = config['train']['lr_scheduler']
    scheduler = None

    if config['train']['lr_scheduler']['enabled']:
        if config['train']['lr_scheduler']['type'] == "ReduceLROnPlateau":
            scheduler = ReduceLROnPlateau(optimizer,
                                          mode='min',
                                          factor=sc['factor'],
                                          patience=sc['patience'],
                                          threshold_mode=sc['threshold_mode'],
                                          cooldown=sc['cooldown'],
                                          verbose=True)
        elif config['train']['lr_scheduler']['type'] == "StepLR":
            step_size = config['train']['lr_scheduler']['step_size']
            gamma = config['train']['lr_scheduler']['gamma']
            scheduler = StepLR(optimizer, step_size=step_size, gamma=gamma)
        else:
            raise ValueError("unknown scheduler type: %s" %
                             (config['train']['lr_scheduler']['type']))

    if use_gpu:
        print("using gpu")
        model_dy = model_dy.cuda()

    # print("model_dy.vision_net._ref_descriptors.device", model_dy.vision_net._ref_descriptors.device)
    # print("model_dy.vision_net #params: %d" %(count_trainable_parameters(model_dy.vision_net)))

    best_valid_loss = np.inf
    valid_loss_type = config['train']['valid_loss_type']
    global_iteration = 0
    counters = {'train': 0, 'valid': 0}
    epoch_counter_external = 0
    loss = 0

    try:
        for epoch in range(st_epoch, config['train']['n_epoch']):
            phases = ['train', 'valid']
            epoch_counter_external = epoch

            writer.add_scalar("Training Params/epoch", epoch, global_iteration)
            for phase in phases:

                # only validate at a certain frequency
                if (phase == "valid") and (
                    (epoch % config['train']['valid_frequency']) != 0):
                    continue

                model_dy.train(phase == 'train')

                average_meter_container = dict()

                step_duration_meter = AverageMeter()

                # bar = ProgressBar(max_value=data_n_batches[phase])
                loader = dataloaders[phase]

                for i, data in enumerate(loader):

                    loss_container = dict()  # store the losses for this step

                    step_start_time = time.time()

                    global_iteration += 1
                    counters[phase] += 1

                    with torch.set_grad_enabled(phase == 'train'):
                        n_his, n_roll = config['train']['n_history'], config[
                            'train']['n_rollout']
                        n_samples = n_his + n_roll

                        if DEBUG:
                            print("global iteration: %d" % (global_iteration))
                            print("n_samples", n_samples)

                        # [B, n_samples, obs_dim]
                        states = data['observations_combined']

                        # [B, n_samples, action_dim]
                        actions = data['actions']
                        B = actions.shape[0]

                        if use_gpu:
                            states = states.cuda()
                            actions = actions.cuda()

                        # state_cur: B x n_his x state_dim
                        # state_cur = states[:, :n_his]

                        # [B, n_his, state_dim]
                        state_init = states[:, :n_his]

                        # We want to rollout n_roll steps
                        # actions = [B, n_his + n_roll, -1]
                        # so we want action_seq.shape = [B, n_roll, -1]
                        action_start_idx = 0
                        action_end_idx = n_his + n_roll - 1
                        action_seq = actions[:, action_start_idx:
                                             action_end_idx, :]

                        if DEBUG:
                            print("states.shape", states.shape)
                            print("state_init.shape", state_init.shape)
                            print("actions.shape", actions.shape)
                            print("action_seq.shape", action_seq.shape)

                        # try using models_dy.rollout_model instead of doing this manually
                        rollout_data = rollout_model(state_init=state_init,
                                                     action_seq=action_seq,
                                                     dynamics_net=model_dy,
                                                     compute_debug_data=False)

                        # [B, n_roll, state_dim]
                        state_rollout_pred = rollout_data['state_pred']

                        # [B, n_roll, state_dim]
                        state_rollout_gt = states[:, n_his:]

                        if DEBUG:
                            print("state_rollout_gt.shape",
                                  state_rollout_gt.shape)
                            print("state_rollout_pred.shape",
                                  state_rollout_pred.shape)

                        # the loss function is between
                        # [B, n_roll, state_dim]
                        state_pred_err = state_rollout_pred - state_rollout_gt

                        # everything is in 3D space now so no need to do any scaling
                        # all the losses would be in meters . . . .
                        loss_mse = criterionMSE(state_rollout_pred,
                                                state_rollout_gt)
                        loss_l1 = l1Loss(state_rollout_pred, state_rollout_gt)
                        loss_l2 = torch.norm(state_pred_err, dim=-1).mean()
                        loss_smoothl1 = smoothL1(state_rollout_pred,
                                                 state_rollout_gt)
                        loss_smoothl1_final_step = smoothL1(
                            state_rollout_pred[:, -1], state_rollout_gt[:, -1])

                        # compute losses at final step of the rollout
                        mse_final_step = criterionMSE(
                            state_rollout_pred[:, -1], state_rollout_gt[:, -1])
                        l2_final_step = torch.norm(state_pred_err[:, -1],
                                                   dim=-1).mean()
                        l1_final_step = l1Loss(state_rollout_pred[:, -1],
                                               state_rollout_gt[:, -1])

                        loss_container['mse'] = loss_mse
                        loss_container['l1'] = loss_l1
                        loss_container['mse_final_step'] = mse_final_step
                        loss_container['l1_final_step'] = l1_final_step
                        loss_container['l2_final_step'] = l2_final_step
                        loss_container['l2'] = loss_l2
                        loss_container['smooth_l1'] = loss_smoothl1
                        loss_container[
                            'smooth_l1_final_step'] = loss_smoothl1_final_step

                        # compute the loss
                        loss = 0
                        for key, val in config['loss_function'].items():
                            if val['enabled']:
                                loss += loss_container[key] * val['weight']

                        loss_container['loss'] = loss

                        for key, val in loss_container.items():
                            if not key in average_meter_container:
                                average_meter_container[key] = AverageMeter()

                            average_meter_container[key].update(val.item(), B)

                    step_duration_meter.update(time.time() - step_start_time)

                    if phase == 'train':
                        optimizer.zero_grad()
                        loss.backward()
                        optimizer.step()

                    if (i % config['train']['log_per_iter']
                            == 0) or (global_iteration %
                                      config['train']['log_per_iter'] == 0):
                        log = '%s [%d/%d][%d/%d] LR: %.6f' % (
                            phase, epoch, config['train']['n_epoch'], i,
                            data_n_batches[phase], get_lr(optimizer))

                        log += ', l2: %.6f' % (loss_container['l2'].item())
                        log += ', l2_final_step: %.6f' % (
                            loss_container['l2_final_step'].item())

                        log += ', step time %.6f' % (step_duration_meter.avg)
                        step_duration_meter.reset()

                        print(log)

                        # log data to tensorboard
                        # only do it once we have reached 100 iterations
                        if global_iteration > 100:
                            writer.add_scalar("Params/learning rate",
                                              get_lr(optimizer),
                                              global_iteration)
                            writer.add_scalar("Loss_train/%s" % (phase),
                                              loss.item(), global_iteration)

                            for loss_type, loss_obj in loss_container.items():
                                plot_name = "Loss/%s/%s" % (loss_type, phase)
                                writer.add_scalar(plot_name, loss_obj.item(),
                                                  counters[phase])

                    if phase == 'train' and global_iteration % config['train'][
                            'ckp_per_iter'] == 0:
                        save_model(
                            model_dy, '%s/net_dy_epoch_%d_iter_%d' %
                            (train_dir, epoch, i))

                log = '%s [%d/%d] Loss: %.6f, Best valid: %.6f' % (
                    phase, epoch, config['train']['n_epoch'],
                    average_meter_container[valid_loss_type].avg,
                    best_valid_loss)
                print(log)

                # record all average_meter losses
                for key, meter in average_meter_container.items():
                    writer.add_scalar("AvgMeter/%s/%s" % (key, phase),
                                      meter.avg, epoch)

                if phase == "train":
                    if (scheduler is not None) and (
                            config['train']['lr_scheduler']['type']
                            == "StepLR"):
                        scheduler.step()

                if phase == 'valid':
                    if (scheduler is not None) and (
                            config['train']['lr_scheduler']['type']
                            == "ReduceLROnPlateau"):
                        scheduler.step(
                            average_meter_container[valid_loss_type].avg)

                    if average_meter_container[
                            valid_loss_type].avg < best_valid_loss:
                        best_valid_loss = average_meter_container[
                            valid_loss_type].avg
                        training_stats['epoch'] = epoch
                        training_stats['global_iteration'] = counters['valid']
                        save_yaml(training_stats, training_stats_file)
                        save_model(model_dy, '%s/net_best_dy' % (train_dir))

                writer.flush()  # flush SummaryWriter events to disk

    except KeyboardInterrupt:
        # save network if we have a keyboard interrupt
        save_model(
            model_dy, '%s/net_dy_epoch_%d_keyboard_interrupt' %
            (train_dir, epoch_counter_external))
        writer.flush()  # flush SummaryWriter events to disk
Exemple #7
0
from torch.distributions.multivariate_normal import MultivariateNormal

from key_dynam.dynamics.config import gen_args
from key_dynam.dynamics.data import PhysicsDataset, load_data
from key_dynam.dynamics.models_dy import DynaNetGNN
from key_dynam.dynamics.utils import rand_int, count_trainable_parameters, Tee, AverageMeter, get_lr, to_np, set_seed

args = gen_args()
set_seed(args.random_seed)

torch.manual_seed(args.random_seed)
np.random.seed(args.random_seed)

os.system('mkdir -p ' + args.dataf)
os.system('mkdir -p ' + args.outf_dy)
tee = Tee(os.path.join(args.outf_dy, 'train.log'), 'w')

print(args)

# generate data
trans_to_tensor = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])

datasets = {}
dataloaders = {}
data_n_batches = {}
for phase in ['train', 'valid']:
    datasets[phase] = PhysicsDataset(args, phase=phase, trans_to_tensor=trans_to_tensor)
def mpc_w_learned_dynamics(config,
                           train_dir,
                           mpc_dir,
                           state_dict_path=None,
                           keypoint_observation=False):

    # set random seed for reproduction
    set_seed(config['train']['random_seed'])

    tee = Tee(os.path.join(mpc_dir, 'mpc.log'), 'w')

    print(config)

    use_gpu = torch.cuda.is_available()
    '''
    model
    '''
    if config['dynamics']['model_type'] == 'mlp':
        model_dy = DynaNetMLP(config)
    else:
        raise AssertionError("Unknown model type %s" %
                             config['dynamics']['model_type'])

    # print model #params
    print("model #params: %d" % count_trainable_parameters(model_dy))

    if state_dict_path is None:
        if config['mpc']['mpc_dy_epoch'] == -1:
            state_dict_path = os.path.join(train_dir, 'net_best_dy.pth')
        else:
            state_dict_path = os.path.join(
                train_dir, 'net_dy_epoch_%d_iter_%d.pth' % \
                (config['mpc']['mpc_dy_epoch'], config['mpc']['mpc_dy_iter']))

        print("Loading saved ckp from %s" % state_dict_path)

    model_dy.load_state_dict(torch.load(state_dict_path))
    model_dy.eval()

    if use_gpu:
        model_dy.cuda()

    criterionMSE = nn.MSELoss()

    # generate action/observation functions
    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(
        config)

    # planner
    planner = planner_from_config(config)
    '''
    env
    '''
    # set up goal
    obs_goals = np.array([[
        262.9843, 267.3102, 318.9369, 351.1229, 360.2048, 323.5128, 305.6385,
        240.4460, 515.4230, 347.8708
    ],
                          [
                              381.8694, 273.6327, 299.6685, 331.0925, 328.7724,
                              372.0096, 411.0972, 314.7053, 517.7299, 268.4953
                          ],
                          [
                              284.8728, 275.7985, 374.0677, 320.4990, 395.4019,
                              275.4633, 306.2896, 231.4310, 507.0849, 312.4057
                          ],
                          [
                              313.1638, 271.4258, 405.0255, 312.2325, 424.7874,
                              266.3525, 333.6973, 225.7708, 510.1232, 305.3802
                          ],
                          [
                              308.6859, 270.9629, 394.2789, 323.2781, 419.7905,
                              280.1602, 333.8901, 228.1624, 519.1964, 321.5318
                          ],
                          [
                              386.8067, 284.8947, 294.2467, 323.2223, 313.3221,
                              368.9970, 405.9415, 330.9298, 495.9970, 268.9920
                          ],
                          [
                              432.0219, 299.6021, 340.8581, 339.4676, 360.2354,
                              384.5515, 451.4394, 345.2190, 514.6357, 291.2043
                          ],
                          [
                              351.3389, 264.5325, 267.5279, 318.2321, 293.7460,
                              360.0423, 378.4428, 306.9586, 516.4390, 259.7810
                          ],
                          [
                              521.1902, 254.0693, 492.7884, 349.7861, 539.6320,
                              364.5190, 569.2258, 268.8824, 506.9431, 286.9752
                          ],
                          [
                              264.8554, 275.9547, 338.1317, 345.3435, 372.7012,
                              308.4648, 299.3454, 239.9245, 506.2117, 373.8413
                          ]])

    for mpc_idx in range(config['mpc']['num_episodes']):
        if keypoint_observation:
            mpc_episode_keypoint_observation(config,
                                             mpc_idx,
                                             model_dy,
                                             mpc_dir,
                                             planner,
                                             obs_goals[mpc_idx],
                                             action_function,
                                             observation_function,
                                             use_gpu=use_gpu)
        else:
            # not supported for now
            raise AssertionError("currently only support keypoint observation")
Exemple #9
0
def eval_dynamics(config,
                  train_dir,
                  eval_dir,
                  state_dict_path=None,
                  keypoint_observation=False,
                  debug=False,
                  render_human=False):

    # set random seed for reproduction
    set_seed(config['train']['random_seed'])

    tee = Tee(os.path.join(eval_dir, 'eval.log'), 'w')

    print(config)

    use_gpu = torch.cuda.is_available()
    '''
    model
    '''
    model_dy = DynaNetMLP(config)

    # print model #params
    print("model #params: %d" % count_trainable_parameters(model_dy))

    if state_dict_path is None:
        if config['eval']['eval_dy_epoch'] == -1:
            state_dict_path = os.path.join(train_dir, 'net_best_dy.pth')
        else:
            state_dict_path = os.path.join(
                train_dir, 'net_dy_epoch_%d_iter_%d.pth' % \
                (config['eval']['eval_dy_epoch'], config['eval']['eval_dy_iter']))

        print("Loading saved ckp from %s" % state_dict_path)

    model_dy.load_state_dict(torch.load(state_dict_path))
    model_dy.eval()

    if use_gpu:
        model_dy.cuda()

    criterionMSE = nn.MSELoss()
    bar = ProgressBar()

    st_idx = config['eval']['eval_st_idx']
    ed_idx = config['eval']['eval_ed_idx']

    # load the data
    episodes = load_episodes_from_config(config)

    # generate action/observation functions
    action_function = ActionFunctionFactory.function_from_config(config)
    observation_function = ObservationFunctionFactory.function_from_config(
        config)

    dataset = MultiEpisodeDataset(config,
                                  action_function=action_function,
                                  observation_function=observation_function,
                                  episodes=episodes,
                                  phase="valid")

    episode_names = dataset.get_episode_names()
    episode_names.sort()

    num_episodes = None
    # for backwards compatibility
    if "num_episodes" in config["eval"]:
        num_episodes = config["eval"]["num_episodes"]
    else:
        num_episodes = 10

    episode_list = []
    if debug:
        episode_list = [episode_names[0]]
    else:
        episode_list = episode_names[:num_episodes]

    for roll_idx, episode_name in enumerate(episode_list):
        print("episode_name", episode_name)
        if keypoint_observation:
            eval_episode_keypoint_observations(config,
                                               dataset,
                                               episode_name,
                                               roll_idx,
                                               model_dy,
                                               eval_dir,
                                               start_idx=9,
                                               n_prediction=30,
                                               render_human=render_human)
        else:
            eval_episode(config,
                         dataset,
                         episode_name,
                         roll_idx,
                         model_dy,
                         eval_dir,
                         start_idx=9,
                         n_prediction=30,
                         render_human=render_human)