Exemple #1
0
def vec_sparse_2_dense(key_list, vec_dist, dim):
	"""Convertes a sparse vector to a dense one."""
	
	import key_ops
	
	dense_vec = [0] * dim
	for key in vec_dist:
		index = key_ops.key_2_index(key_list, key)
		dense_vec[index] = vec_dist[key]
	return dense_vec
Exemple #2
0
def dead_prob(h, key):
	"""Gets the probability rate of death."""
	
	import key_ops
	
	index = key_ops.key_2_index(h.key_list, key)
	vec_excited_list = h.matrix[index]
	try:
		diag_entry = vec_excited_list[key]
	except KeyError:
		diag_entry = 0
	prob_rate = diag_entry - h.ref_energy
	return prob_rate
Exemple #3
0
	def disp_mat(self):
		"""Displays the Hamiltonian as a dense matrix."""
		
		import key_ops
		
		for vec in self.matrix:
			array = [0] * self.para_list[4]
			for key in vec:
				index = key_ops.key_2_index(self.key_list, key)
				array[index] = vec[key]
			for i in array:
				print '{0:6.3f}'.format(i),
			print ''
Exemple #4
0
def excited_key_and_prob(h, key_gnd):
	"""From a ground state, gets a possible excited state, and the probability rate."""
	
	import key_ops
	import random
	
	index = key_ops.key_2_index(h.key_list, key_gnd)
	vec_excited_list = h.matrix[index]
	choice_num = len(vec_excited_list) - 1
	if choice_num > 0:
		# Connected to others.
		key_exc = key_gnd
		while key_exc == key_gnd:
			key_exc = random.sample(vec_excited_list, 1)[0]
		entry = vec_excited_list[key_exc]
		prob_rate = choice_num * entry
		return key_exc, prob_rate
	else:
		return None, 0
Exemple #5
0
	def __init__(self, file_name):
		"""Initializes a $Hamiltonian$ object."""
		
		import key_ops
		import read_h
		import vec_ops
		
		self.para_list = []
		self.eig_vecs = []
		self.eig_vals = []
		self.key_list = []
		
		# Loads data from a file.
		read_h.read_outof_file(file_name, self.para_list, self.eig_vecs, self.eig_vals)
		# Makes an ordered list of keys.
		key_ops.create_keys(self.key_list, self.para_list)
		
		# Computes H=sum(Ei*|vi><vi|)
		self.matrix = [{}] * self.para_list[4]
		for i in range(self.para_list[4]):
			vec = self.eig_vecs[i]
			for key in vec:
				index = key_ops.key_2_index(self.key_list, key)
				column = vec_ops.vec_scalar_prod(vec, vec[key]*self.eig_vals[i] , False)
				self.matrix[index] = vec_ops.vec_add(self.matrix[index], column, False)
		
		# Reference determinant and reference energy.
		# Selects the lowest-energy determinant.
		self.ref_index = 0
		self.ref_key = self.key_list[0]
		self.ref_energy = self.matrix[0][self.ref_key]
		for i in range(1, self.para_list[4]):
			try:
				temp_ref_energy = self.matrix[i][self.key_list[i]]
			except KeyError:
				temp_ref_energy = 0
			if temp_ref_energy < self.ref_energy:
				self.ref_index = i
				self.ref_key = self.key_list[i]
				self.ref_energy = temp_ref_energy