def importer(
    artifact_uri: Union[pipeline_channel.PipelineParameterChannel, str],
    artifact_class: Type[artifact_types.Artifact],
    reimport: bool = False,
    metadata: Optional[Mapping[str, Any]] = None,
) -> pipeline_task.PipelineTask:
    """dsl.importer for importing an existing artifact. Only for v2 pipeline.

    Args:
      artifact_uri: The artifact uri to import from.
      artifact_type_schema: The user specified artifact type schema of the
        artifact to be imported.
      reimport: Whether to reimport the artifact. Defaults to False.
      metadata: Properties of the artifact.

    Returns:
      A PipelineTask instance.

    Raises:
      ValueError if the passed in artifact_uri is neither a PipelineParam nor a
        constant string value.
    """
    component_spec = structures.ComponentSpec(
        name='importer',
        implementation=structures.Implementation(
            importer=structures.ImporterSpec(
                artifact_uri=placeholders.input_parameter_placeholder(
                    INPUT_KEY),
                type_schema=artifact_class.TYPE_NAME,
                reimport=reimport,
                metadata=metadata)),
        inputs={INPUT_KEY: structures.InputSpec(type='String')},
        outputs={
            OUTPUT_KEY: structures.OutputSpec(type=artifact_class.__name__)
        },
    )

    importer = importer_component.ImporterComponent(
        component_spec=component_spec)
    return importer(uri=artifact_uri)
def build_task_spec_for_task(
    task: pipeline_task.PipelineTask,
    parent_component_inputs: pipeline_spec_pb2.ComponentInputsSpec,
    tasks_in_current_dag: List[str],
    input_parameters_in_current_dag: List[str],
    input_artifacts_in_current_dag: List[str],
) -> pipeline_spec_pb2.PipelineTaskSpec:
    """Builds PipelineTaskSpec for a pipeline task.

    A task input may reference an output outside its immediate DAG.
    For instance::

        random_num = random_num_op(...)
        with dsl.Condition(random_num.output > 5):
            print_op('%s > 5' % random_num.output)

    In this example, `dsl.Condition` forms a subDAG with one task from `print_op`
    inside the subDAG. The task of `print_op` references output from `random_num`
    task, which is outside the sub-DAG. When compiling to IR, such cross DAG
    reference is disallowed. So we need to "punch a hole" in the sub-DAG to make
    the input available in the subDAG component inputs if it's not already there,
    Next, we can call this method to fix the tasks inside the subDAG to make them
    reference the component inputs instead of directly referencing the original
    producer task.

    Args:
        task: The task to build a PipelineTaskSpec for.
        parent_component_inputs: The task's parent component's input specs.
        tasks_in_current_dag: The list of tasks names for tasks in the same dag.
        input_parameters_in_current_dag: The list of input parameters in the DAG
            component.
        input_artifacts_in_current_dag: The list of input artifacts in the DAG
            component.

    Returns:
        A PipelineTaskSpec object representing the task.
    """
    pipeline_task_spec = pipeline_spec_pb2.PipelineTaskSpec()
    pipeline_task_spec.task_info.name = (
        task.task_spec.display_name or task.name)
    # Use task.name for component_ref.name because we may customize component
    # spec for individual tasks to work around the lack of optional inputs
    # support in IR.
    pipeline_task_spec.component_ref.name = (
        component_utils.sanitize_component_name(task.name))
    pipeline_task_spec.caching_options.enable_cache = (
        task.task_spec.enable_caching)

    for input_name, input_value in task.inputs.items():
        input_type = task.component_spec.inputs[input_name].type

        if isinstance(input_value, pipeline_channel.PipelineArtifactChannel):

            if input_value.task_name:
                # Value is produced by an upstream task.
                if input_value.task_name in tasks_in_current_dag:
                    # Dependent task within the same DAG.
                    pipeline_task_spec.inputs.artifacts[
                        input_name].task_output_artifact.producer_task = (
                            component_utils.sanitize_task_name(
                                input_value.task_name))
                    pipeline_task_spec.inputs.artifacts[
                        input_name].task_output_artifact.output_artifact_key = (
                            input_value.name)
                else:
                    # Dependent task not from the same DAG.
                    component_input_artifact = (
                        _additional_input_name_for_pipeline_channel(input_value)
                    )
                    assert component_input_artifact in parent_component_inputs.artifacts, \
                        'component_input_artifact: {} not found. All inputs: {}'.format(
                            component_input_artifact, parent_component_inputs)
                    pipeline_task_spec.inputs.artifacts[
                        input_name].component_input_artifact = (
                            component_input_artifact)
            else:
                raise RuntimeError(
                    f'Artifacts must be produced by a task. Got {input_value}.')

        elif isinstance(input_value, pipeline_channel.PipelineParameterChannel):

            if input_value.task_name:
                # Value is produced by an upstream task.
                if input_value.task_name in tasks_in_current_dag:
                    # Dependent task within the same DAG.
                    pipeline_task_spec.inputs.parameters[
                        input_name].task_output_parameter.producer_task = (
                            component_utils.sanitize_task_name(
                                input_value.task_name))
                    pipeline_task_spec.inputs.parameters[
                        input_name].task_output_parameter.output_parameter_key = (
                            input_value.name)
                else:
                    # Dependent task not from the same DAG.
                    component_input_parameter = (
                        _additional_input_name_for_pipeline_channel(input_value)
                    )
                    assert component_input_parameter in parent_component_inputs.parameters, \
                        'component_input_parameter: {} not found. All inputs: {}'.format(
                            component_input_parameter, parent_component_inputs)
                    pipeline_task_spec.inputs.parameters[
                        input_name].component_input_parameter = (
                            component_input_parameter)
            else:
                # Value is from pipeline input.
                component_input_parameter = input_value.full_name
                if component_input_parameter not in parent_component_inputs.parameters:
                    component_input_parameter = (
                        _additional_input_name_for_pipeline_channel(input_value)
                    )
                pipeline_task_spec.inputs.parameters[
                    input_name].component_input_parameter = (
                        component_input_parameter)

        elif isinstance(input_value, for_loop.LoopArgument):

            component_input_parameter = (
                _additional_input_name_for_pipeline_channel(input_value))
            assert component_input_parameter in parent_component_inputs.parameters, \
                'component_input_parameter: {} not found. All inputs: {}'.format(
                    component_input_parameter, parent_component_inputs)
            pipeline_task_spec.inputs.parameters[
                input_name].component_input_parameter = (
                    component_input_parameter)

        elif isinstance(input_value, for_loop.LoopArgumentVariable):

            component_input_parameter = (
                _additional_input_name_for_pipeline_channel(
                    input_value.loop_argument))
            assert component_input_parameter in parent_component_inputs.parameters, \
                'component_input_parameter: {} not found. All inputs: {}'.format(
                    component_input_parameter, parent_component_inputs)
            pipeline_task_spec.inputs.parameters[
                input_name].component_input_parameter = (
                    component_input_parameter)
            pipeline_task_spec.inputs.parameters[
                input_name].parameter_expression_selector = (
                    'parseJson(string_value)["{}"]'.format(
                        input_value.subvar_name))

        elif isinstance(input_value, str):

            # Handle extra input due to string concat
            pipeline_channels = (
                pipeline_channel.extract_pipeline_channels_from_any(input_value)
            )
            for channel in pipeline_channels:
                # value contains PipelineChannel placeholders which needs to be
                # replaced. And the input needs to be added to the task spec.

                # Form the name for the compiler injected input, and make sure it
                # doesn't collide with any existing input names.
                additional_input_name = (
                    _additional_input_name_for_pipeline_channel(channel))

                # We don't expect collision to happen because we prefix the name
                # of additional input with 'pipelinechannel--'. But just in case
                # collision did happend, throw a RuntimeError so that we don't
                # get surprise at runtime.
                for existing_input_name, _ in task.inputs.items():
                    if existing_input_name == additional_input_name:
                        raise RuntimeError(
                            'Name collision between existing input name '
                            '{} and compiler injected input name {}'.format(
                                existing_input_name, additional_input_name))

                additional_input_placeholder = (
                    placeholders.input_parameter_placeholder(
                        additional_input_name))
                input_value = input_value.replace(channel.pattern,
                                                  additional_input_placeholder)

                if channel.task_name:
                    # Value is produced by an upstream task.
                    if channel.task_name in tasks_in_current_dag:
                        # Dependent task within the same DAG.
                        pipeline_task_spec.inputs.parameters[
                            additional_input_name].task_output_parameter.producer_task = (
                                component_utils.sanitize_task_name(
                                    channel.task_name))
                        pipeline_task_spec.inputs.parameters[
                            input_name].task_output_parameter.output_parameter_key = (
                                channel.name)
                    else:
                        # Dependent task not from the same DAG.
                        component_input_parameter = (
                            _additional_input_name_for_pipeline_channel(channel)
                        )
                        assert component_input_parameter in parent_component_inputs.parameters, \
                            'component_input_parameter: {} not found. All inputs: {}'.format(
                                component_input_parameter, parent_component_inputs)
                        pipeline_task_spec.inputs.parameters[
                            additional_input_name].component_input_parameter = (
                                component_input_parameter)
                else:
                    # Value is from pipeline input. (or loop?)
                    component_input_parameter = channel.full_name
                    if component_input_parameter not in parent_component_inputs.parameters:
                        component_input_parameter = (
                            _additional_input_name_for_pipeline_channel(channel)
                        )
                    pipeline_task_spec.inputs.parameters[
                        additional_input_name].component_input_parameter = (
                            component_input_parameter)

            pipeline_task_spec.inputs.parameters[
                input_name].runtime_value.constant.string_value = input_value

        elif isinstance(input_value, (str, int, float, bool, dict, list)):

            pipeline_task_spec.inputs.parameters[
                input_name].runtime_value.constant.CopyFrom(
                    _to_protobuf_value(input_value))

        else:
            raise ValueError(
                'Input argument supports only the following types: '
                'str, int, float, bool, dict, and list.'
                f'Got {input_value} of type {type(input_value)}.')

    return pipeline_task_spec
Exemple #3
0
        def expand_command_part(arg) -> Union[str, List[str], None]:
            if arg is None:
                return None

            if isinstance(arg, (str, int, float, bool)):
                return str(arg)

            elif isinstance(arg, (dict, list)):
                return json.dumps(arg)

            elif isinstance(arg, structures.InputValuePlaceholder):
                input_name = arg.input_name
                if not type_utils.is_parameter_type(
                        inputs_dict[input_name].type):
                    raise TypeError(
                        f'Input "{input_name}" with type '
                        f'"{inputs_dict[input_name].type}" cannot be paired with '
                        'InputValuePlaceholder.')

                if input_name in arguments:
                    return placeholders.input_parameter_placeholder(input_name)
                else:
                    input_spec = inputs_dict[input_name]
                    if input_spec.default is not None:
                        return None
                    else:
                        raise ValueError(
                            f'No value provided for input: {input_name}.')

            elif isinstance(arg, structures.InputUriPlaceholder):
                input_name = arg.input_name
                if type_utils.is_parameter_type(inputs_dict[input_name].type):
                    raise TypeError(
                        f'Input "{input_name}" with type '
                        f'"{inputs_dict[input_name].type}" cannot be paired with '
                        'InputUriPlaceholder.')

                if input_name in arguments:
                    input_uri = placeholders.input_artifact_uri_placeholder(
                        input_name)
                    return input_uri
                else:
                    input_spec = inputs_dict[input_name]
                    if input_spec.default is not None:
                        return None
                    else:
                        raise ValueError(
                            f'No value provided for input: {input_name}.')

            elif isinstance(arg, structures.InputPathPlaceholder):
                input_name = arg.input_name
                if type_utils.is_parameter_type(inputs_dict[input_name].type):
                    raise TypeError(
                        f'Input "{input_name}" with type '
                        f'"{inputs_dict[input_name].type}" cannot be paired with '
                        'InputPathPlaceholder.')

                if input_name in arguments:
                    input_path = placeholders.input_artifact_path_placeholder(
                        input_name)
                    return input_path
                else:
                    input_spec = inputs_dict[input_name]
                    if input_spec.optional:
                        return None
                    else:
                        raise ValueError(
                            f'No value provided for input: {input_name}.')

            elif isinstance(arg, structures.OutputUriPlaceholder):
                output_name = arg.output_name
                if type_utils.is_parameter_type(outputs_dict[output_name].type):
                    raise TypeError(
                        f'Onput "{output_name}" with type '
                        f'"{outputs_dict[output_name].type}" cannot be paired with '
                        'OutputUriPlaceholder.')

                output_uri = placeholders.output_artifact_uri_placeholder(
                    output_name)
                return output_uri

            elif isinstance(arg, structures.OutputPathPlaceholder):
                output_name = arg.output_name

                if type_utils.is_parameter_type(outputs_dict[output_name].type):
                    output_path = placeholders.output_parameter_path_placeholder(
                        output_name)
                else:
                    output_path = placeholders.output_artifact_path_placeholder(
                        output_name)
                return output_path

            elif isinstance(arg, structures.ConcatPlaceholder):
                expanded_argument_strings = expand_argument_list(arg.items)
                return ''.join(expanded_argument_strings)

            elif isinstance(arg, structures.IfPresentPlaceholder):
                if arg.if_structure.input_name in argument_values:
                    result_node = arg.if_structure.then
                else:
                    result_node = arg.if_structure.otherwise

                if result_node is None:
                    return []

                if isinstance(result_node, list):
                    expanded_result = expand_argument_list(result_node)
                else:
                    expanded_result = expand_command_part(result_node)
                return expanded_result

            else:
                raise TypeError('Unrecognized argument type: {}'.format(arg))
Exemple #4
0
 def test_input_parameter_placeholder(self):
     self.assertEqual(
         "{{$.inputs.parameters['input1']}}",
         placeholders.input_parameter_placeholder('input1'),
     )