def test_component_spec_with_placeholder_referencing_nonexisting_input_output(
            self):
        with self.assertRaisesRegex(
                pydantic.ValidationError, 'Argument "input_name=\'input000\'" '
                'references non-existing input.'):
            structures.ComponentSpec(
                name='component_1',
                implementation=structures.Implementation(
                    container=structures.ContainerSpec(
                        image='alpine',
                        commands=[
                            'sh',
                            '-c',
                            'set -ex\necho "$0" > "$1"',
                            structures.InputValuePlaceholder(
                                input_name='input000'),
                            structures.OutputPathPlaceholder(
                                output_name='output1'),
                        ],
                    )),
                inputs={'input1': structures.InputSpec(type='String')},
                outputs={'output1': structures.OutputSpec(type='String')},
            )

        with self.assertRaisesRegex(
                pydantic.ValidationError,
                'Argument "output_name=\'output000\'" '
                'references non-existing output.'):
            structures.ComponentSpec(
                name='component_1',
                implementation=structures.Implementation(
                    container=structures.ContainerSpec(
                        image='alpine',
                        commands=[
                            'sh',
                            '-c',
                            'set -ex\necho "$0" > "$1"',
                            structures.InputValuePlaceholder(
                                input_name='input1'),
                            structures.OutputPathPlaceholder(
                                output_name='output000'),
                        ],
                    )),
                inputs={'input1': structures.InputSpec(type='String')},
                outputs={'output1': structures.OutputSpec(type='String')},
            )
    def test_simple_component_spec_save_to_component_yaml(self):
        open_mock = mock.mock_open()
        expected_yaml = textwrap.dedent("""\
        name: component_1
        inputs:
          input1: {type: String}
        outputs:
          output1: {type: String}
        implementation:
          container:
            image: alpine
            commands:
            - sh
            - -c
            - 'set -ex

              echo "$0" > "$1"'
            - {inputValue: input1}
            - {outputPath: output1}
        """)

        with mock.patch("builtins.open", open_mock, create=True):
            structures.ComponentSpec(
                name='component_1',
                implementation=structures.Implementation(
                    container=structures.ContainerSpec(
                        image='alpine',
                        commands=[
                            'sh',
                            '-c',
                            'set -ex\necho "$0" > "$1"',
                            structures.InputValuePlaceholder(
                                input_name='input1'),
                            structures.OutputPathPlaceholder(
                                output_name='output1'),
                        ],
                    )),
                inputs={
                    'input1': structures.InputSpec(type='String')
                },
                outputs={
                    'output1': structures.OutputSpec(type='String')
                },
            ).save_to_component_yaml('test_save_file.txt')

        open_mock.assert_called_with('test_save_file.txt', 'a')
        open_mock.return_value.write.assert_called_once_with(expected_yaml)
Exemple #3
0
    def test_create_pipeline_task_valid(self):
        expected_component_spec = structures.ComponentSpec(
            name='component1',
            implementation=structures.Implementation(
                container=structures.ContainerSpec(
                    image='alpine',
                    commands=['sh', '-c', 'echo "$0" >> "$1"'],
                    arguments=[
                        structures.InputValuePlaceholder(input_name='input1'),
                        structures.OutputPathPlaceholder(
                            output_name='output1'),
                    ],
                )),
            inputs={
                'input1': structures.InputSpec(type='String'),
            },
            outputs={
                'output1': structures.OutputSpec(type='Artifact'),
            },
        )
        expected_task_spec = structures.TaskSpec(
            name='component1',
            inputs={'input1': 'value'},
            dependent_tasks=[],
            component_ref='component1',
        )
        expected_container_spec = structures.ContainerSpec(
            image='alpine',
            commands=['sh', '-c', 'echo "$0" >> "$1"'],
            arguments=[
                "{{$.inputs.parameters['input1']}}",
                "{{$.outputs.artifacts['output1'].path}}",
            ],
        )

        task = pipeline_task.PipelineTask(
            component_spec=structures.ComponentSpec.load_from_component_yaml(
                V2_YAML),
            arguments={'input1': 'value'},
        )
        self.assertEqual(task.task_spec, expected_task_spec)
        self.assertEqual(task.component_spec, expected_component_spec)
        self.assertEqual(task.container_spec, expected_container_spec)
    def test_simple_component_spec_load_from_v2_component_yaml(self):
        component_yaml_v2 = textwrap.dedent("""\
        name: component_1
        inputs:
          input1:
            type: String
        outputs:
          output1:
            type: String
        implementation:
          container:
            image: alpine
            commands:
            - sh
            - -c
            - 'set -ex

                echo "$0" > "$1"'
            - inputValue: input1
            - outputPath: output1
        """)

        generated_spec = structures.ComponentSpec.load_from_component_yaml(
            component_yaml_v2)

        expected_spec = structures.ComponentSpec(
            name='component_1',
            implementation=structures.Implementation(
                container=structures.ContainerSpec(
                    image='alpine',
                    commands=[
                        'sh',
                        '-c',
                        'set -ex\necho "$0" > "$1"',
                        structures.InputValuePlaceholder(input_name='input1'),
                        structures.OutputPathPlaceholder(output_name='output1'),
                    ],
                )),
            inputs={'input1': structures.InputSpec(type='String')},
            outputs={'output1': structures.OutputSpec(type='String')})
        self.assertEqual(generated_spec, expected_spec)
def importer(
    artifact_uri: Union[pipeline_channel.PipelineParameterChannel, str],
    artifact_class: Type[artifact_types.Artifact],
    reimport: bool = False,
    metadata: Optional[Mapping[str, Any]] = None,
) -> pipeline_task.PipelineTask:
    """dsl.importer for importing an existing artifact. Only for v2 pipeline.

    Args:
      artifact_uri: The artifact uri to import from.
      artifact_type_schema: The user specified artifact type schema of the
        artifact to be imported.
      reimport: Whether to reimport the artifact. Defaults to False.
      metadata: Properties of the artifact.

    Returns:
      A PipelineTask instance.

    Raises:
      ValueError if the passed in artifact_uri is neither a PipelineParam nor a
        constant string value.
    """
    component_spec = structures.ComponentSpec(
        name='importer',
        implementation=structures.Implementation(
            importer=structures.ImporterSpec(
                artifact_uri=placeholders.input_parameter_placeholder(
                    INPUT_KEY),
                type_schema=artifact_class.TYPE_NAME,
                reimport=reimport,
                metadata=metadata)),
        inputs={INPUT_KEY: structures.InputSpec(type='String')},
        outputs={
            OUTPUT_KEY: structures.OutputSpec(type=artifact_class.__name__)
        },
    )

    importer = importer_component.ImporterComponent(
        component_spec=component_spec)
    return importer(uri=artifact_uri)
    def test_component_spec_load_from_v1_component_yaml(self):
        component_yaml_v1 = textwrap.dedent("""\
        name: Component with 2 inputs and 2 outputs
        inputs:
        - {name: Input parameter, type: String}
        - {name: Input artifact}
        outputs:
        - {name: Output 1}
        - {name: Output 2}
        implementation:
          container:
            image: busybox
            command: [sh, -c, '
                mkdir -p $(dirname "$2")
                mkdir -p $(dirname "$3")
                echo "$0" > "$2"
                cp "$1" "$3"
                '
            ]
            args:
            - {inputValue: Input parameter}
            - {inputPath: Input artifact}
            - {outputPath: Output 1}
            - {outputPath: Output 2}
        """)

        generated_spec = structures.ComponentSpec.load_from_component_yaml(
            component_yaml_v1)

        expected_spec = structures.ComponentSpec(
            name='Component with 2 inputs and 2 outputs',
            implementation=structures.Implementation(
                container=structures.ContainerSpec(
                    image='busybox',
                    commands=[
                        'sh',
                        '-c',
                        (' mkdir -p $(dirname "$2") mkdir -p $(dirname "$3") '
                         'echo "$0" > "$2" cp "$1" "$3" '),
                    ],
                    arguments=[
                        structures.InputValuePlaceholder(
                            input_name='input_parameter'),
                        structures.InputPathPlaceholder(
                            input_name='input_artifact'),
                        structures.OutputPathPlaceholder(
                            output_name='output_1'),
                        structures.OutputPathPlaceholder(
                            output_name='output_2'),
                    ],
                    env={},
                )),
            inputs={
                'input_parameter': structures.InputSpec(type='String'),
                'input_artifact': structures.InputSpec(type='Artifact')
            },
            outputs={
                'output_1': structures.OutputSpec(type='Artifact'),
                'output_2': structures.OutputSpec(type='Artifact'),
            })

        self.assertEqual(generated_spec, expected_spec)
            - --arg1
            - {inputValue: optional_input_1}
            else: [--arg2, default]
    """)

V2_COMPONENT_SPEC_IF_PLACEHOLDER = structures.ComponentSpec(
    name='component_if',
    implementation=structures.Implementation(
        container=structures.ContainerSpec(
            image='alpine',
            arguments=[
                structures.IfPresentPlaceholder(
                    if_structure=structures.IfPresentPlaceholderStructure(
                        input_name='optional_input_1',
                        then=[
                            '--arg1',
                            structures.InputValuePlaceholder(
                                input_name='optional_input_1'),
                        ],
                        otherwise=[
                            '--arg2',
                            'default',
                        ]))
            ])),
    inputs={
        'optional_input_1': structures.InputSpec(type='String', default=None)
    },
)

V1_YAML_CONCAT_PLACEHOLDER = textwrap.dedent("""\
    name: component_concat
Exemple #8
0
def create_component_from_func(func: Callable,
                               base_image: Optional[str] = None,
                               target_image: Optional[str] = None,
                               packages_to_install: List[str] = None,
                               output_component_file: Optional[str] = None,
                               install_kfp_package: bool = True,
                               kfp_package_path: Optional[str] = None):
    """Implementation for the @component decorator.

    The decorator is defined under component_decorator.py. See the
    decorator for the canonical documentation for this function.
    """
    packages_to_install = packages_to_install or []

    if install_kfp_package and target_image is None:
        if kfp_package_path is None:
            kfp_package_path = _get_default_kfp_package_path()
        packages_to_install.append(kfp_package_path)

    packages_to_install_command = _get_packages_to_install_command(
        package_list=packages_to_install)

    command = []
    args = []
    if base_image is None:
        base_image = _DEFAULT_BASE_IMAGE

    component_image = base_image

    if target_image:
        component_image = target_image
        command, args = _get_command_and_args_for_containerized_component(
            function_name=func.__name__, )
    else:
        command, args = _get_command_and_args_for_lightweight_component(
            func=func)

    component_spec = extract_component_interface(func)
    component_spec.implementation = structures.Implementation(
        container=structures.ContainerSpec(
            image=component_image,
            commands=packages_to_install_command + command,
            arguments=args,
        ))

    module_path = pathlib.Path(inspect.getsourcefile(func))
    module_path.resolve()

    component_name = _python_function_name_to_component_name(func.__name__)
    component_info = ComponentInfo(name=component_name,
                                   function_name=func.__name__,
                                   func=func,
                                   target_image=target_image,
                                   module_path=module_path,
                                   component_spec=component_spec,
                                   output_component_file=output_component_file,
                                   base_image=base_image)

    if REGISTERED_MODULES is not None:
        REGISTERED_MODULES[component_name] = component_info

    if output_component_file:
        component_spec.save_to_component_yaml(output_component_file)

    return python_component.PythonComponent(component_spec=component_spec,
                                            python_func=func)
Exemple #9
0
def extract_component_interface(func: Callable) -> structures.ComponentSpec:
    single_output_name_const = 'Output'

    signature = inspect.signature(func)
    parameters = list(signature.parameters.values())

    parsed_docstring = docstring_parser.parse(inspect.getdoc(func))
    doc_dict = {p.arg_name: p.description for p in parsed_docstring.params}

    inputs = {}
    outputs = {}

    input_names = set()
    output_names = set()
    for parameter in parameters:
        parameter_type = type_annotations.maybe_strip_optional_from_annotation(
            parameter.annotation)
        passing_style = None
        io_name = parameter.name

        if type_annotations.is_artifact_annotation(parameter_type):
            # passing_style is either type_annotations.InputAnnotation or
            # type_annotations.OutputAnnotation.
            passing_style = type_annotations.get_io_artifact_annotation(
                parameter_type)

            # parameter_type is type_annotations.Artifact or one of its subclasses.
            parameter_type = type_annotations.get_io_artifact_class(
                parameter_type)
            if not issubclass(parameter_type, artifact_types.Artifact):
                raise ValueError(
                    'Input[T] and Output[T] are only supported when T is a '
                    'subclass of Artifact. Found `{} with type {}`'.format(
                        io_name, parameter_type))

            if parameter.default is not inspect.Parameter.empty:
                raise ValueError(
                    'Default values for Input/Output artifacts are not supported.'
                )
        elif isinstance(
                parameter_type,
            (type_annotations.InputPath, type_annotations.OutputPath)):
            passing_style = type(parameter_type)
            parameter_type = parameter_type.type
            if parameter.default is not inspect.Parameter.empty and not (
                    passing_style == type_annotations.InputPath
                    and parameter.default is None):
                raise ValueError(
                    'Path inputs only support default values of None. Default'
                    ' values for outputs are not supported.')

        type_struct = _annotation_to_type_struct(parameter_type)
        if type_struct is None:
            raise TypeError('Missing type annotation for argument: {}'.format(
                parameter.name))

        if passing_style in [
                type_annotations.OutputAnnotation, type_annotations.OutputPath
        ]:
            io_name = _maybe_make_unique(io_name, output_names)
            output_names.add(io_name)
            output_spec = structures.OutputSpec(type=type_struct,
                                                description=doc_dict.get(
                                                    parameter.name))
            outputs[io_name] = output_spec
        else:
            io_name = _maybe_make_unique(io_name, input_names)
            input_names.add(io_name)
            if parameter.default is not inspect.Parameter.empty:
                input_spec = structures.InputSpec(
                    type=type_struct,
                    description=doc_dict.get(parameter.name),
                    default=parameter.default,
                )
            else:
                input_spec = structures.InputSpec(
                    type=type_struct,
                    description=doc_dict.get(parameter.name),
                )

            inputs[io_name] = input_spec

    #Analyzing the return type annotations.
    return_ann = signature.return_annotation
    if hasattr(return_ann, '_fields'):  #NamedTuple
        # Getting field type annotations.
        # __annotations__ does not exist in python 3.5 and earlier
        # _field_types does not exist in python 3.9 and later
        field_annotations = getattr(return_ann,
                                    '__annotations__', None) or getattr(
                                        return_ann, '_field_types', None)
        for field_name in return_ann._fields:
            type_struct = None
            if field_annotations:
                type_struct = _annotation_to_type_struct(
                    field_annotations.get(field_name, None))

            output_name = _maybe_make_unique(field_name, output_names)
            output_names.add(output_name)
            output_spec = structures.OutputSpec(type=type_struct)
            outputs[output_name] = output_spec
    # Deprecated dict-based way of declaring multiple outputs. Was only used by
    # the @component decorator
    elif isinstance(return_ann, dict):
        warnings.warn(
            "The ability to specify multiple outputs using the dict syntax"
            " has been deprecated. It will be removed soon after release"
            " 0.1.32. Please use typing.NamedTuple to declare multiple"
            " outputs.")
        for output_name, output_type_annotation in return_ann.items():
            output_type_struct = _annotation_to_type_struct(
                output_type_annotation)
            output_spec = structures.OutputSpec(type=output_type_struct)
            outputs[name] = output_spec
    elif signature.return_annotation is not None and signature.return_annotation != inspect.Parameter.empty:
        output_name = _maybe_make_unique(single_output_name_const,
                                         output_names)
        # Fixes exotic, but possible collision:
        #   `def func(output_path: OutputPath()) -> str: ...`
        output_names.add(output_name)
        type_struct = _annotation_to_type_struct(signature.return_annotation)
        output_spec = structures.OutputSpec(type=type_struct)
        outputs[output_name] = output_spec

    # Component name and description are derived from the function's name and
    # docstring.  The name can be overridden by setting setting func.__name__
    # attribute (of the legacy func._component_human_name attribute).  The
    # description can be overridden by setting the func.__doc__ attribute (or
    # the legacy func._component_description attribute).
    component_name = getattr(func, '_component_human_name',
                             None) or _python_function_name_to_component_name(
                                 func.__name__)
    description = getattr(func, '_component_description',
                          None) or parsed_docstring.short_description
    if description:
        description = description.strip()

    component_spec = structures.ComponentSpec(
        name=component_name,
        description=description,
        inputs=inputs if inputs else None,
        outputs=outputs if outputs else None,
        # Dummy implementation to bypass model validation.
        implementation=structures.Implementation(),
    )
    return component_spec