def InferenceService( metadata, default_model_spec, canary_model_spec=None, canary_model_traffic=None ): return V1alpha2InferenceService( api_version=constants.KFSERVING_GROUP + "/" + constants.KFSERVING_VERSION, kind=constants.KFSERVING_KIND, metadata=metadata, spec=V1alpha2InferenceServiceSpec( default=default_model_spec, canary=canary_model_spec, canary_traffic_percent=canary_model_traffic, ), )
def test_batcher(): service_name = 'isvc-pytorch-batcher' default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( batcher=V1alpha2Batcher( max_batch_size=32, max_latency=5000, timeout=60), min_replicas=1, pytorch=V1alpha2PyTorchSpec( storage_uri='gs://kfserving-samples/models/pytorch/cifar10', model_class_name='Net', resources=V1ResourceRequirements(requests={ 'cpu': '1000m', 'memory': '2Gi' }, limits={ 'cpu': '1000m', 'memory': '2Gi' })))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta(name=service_name, namespace=KFSERVING_TEST_NAMESPACE), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing.create(isvc) try: KFServing.wait_isvc_ready(service_name, namespace=KFSERVING_TEST_NAMESPACE) except RuntimeError as e: print( KFServing.api_instance.get_namespaced_custom_object( "serving.knative.dev", "v1", KFSERVING_TEST_NAMESPACE, "services", service_name + "-predictor-default")) pods = KFServing.core_api.list_namespaced_pod( KFSERVING_TEST_NAMESPACE, label_selector='serving.kubeflow.org/inferenceservice={}'.format( service_name)) for pod in pods.items: print(pod) raise e with futures.ThreadPoolExecutor(max_workers=4) as executor: future_res = [ executor.submit( lambda: predict(service_name, './data/cifar_input.json')) for _ in range(4) ] results = [f.result()["batchId"] for f in future_res] assert (all(x == results[0] for x in results) == True) KFServing.delete(service_name, KFSERVING_TEST_NAMESPACE)
def test_transformer(): service_name = 'isvc-transformer' default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=1, pytorch=V1alpha2PyTorchSpec( storage_uri='gs://kfserving-samples/models/pytorch/cifar10', model_class_name="Net", resources=V1ResourceRequirements(requests={ 'cpu': '100m', 'memory': '256Mi' }, limits={ 'cpu': '100m', 'memory': '256Mi' }))), transformer=V1alpha2TransformerSpec( min_replicas=1, custom=V1alpha2CustomSpec(container=V1Container( image='gcr.io/kubeflow-ci/kfserving/image-transformer:latest', name='kfserving-container', resources=V1ResourceRequirements(requests={ 'cpu': '100m', 'memory': '256Mi' }, limits={ 'cpu': '100m', 'memory': '256Mi' }))))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta(name=service_name, namespace=KFSERVING_TEST_NAMESPACE), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing.create(isvc) try: KFServing.wait_isvc_ready(service_name, namespace=KFSERVING_TEST_NAMESPACE) except RuntimeError as e: print( KFServing.api_instance.get_namespaced_custom_object( "serving.knative.dev", "v1", KFSERVING_TEST_NAMESPACE, "services", service_name + "-predictor-default")) raise e probs = predict(service_name, './data/transformer.json') assert (np.argmax(probs) == 3) KFServing.delete(service_name, KFSERVING_TEST_NAMESPACE)
def test_canary_rollout(): service_name = 'isvc-canary' default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=1, tensorflow=V1alpha2TensorflowSpec( storage_uri='gs://kfserving-samples/models/tensorflow/flowers', resources=V1ResourceRequirements(requests={ 'cpu': '100m', 'memory': '256Mi' }, limits={ 'cpu': '100m', 'memory': '256Mi' })))) isvc = V1alpha2InferenceService( api_version=constants.KFSERVING_API_VERSION, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta(name=service_name, namespace=KFSERVING_TEST_NAMESPACE), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing.create(isvc) KFServing.wait_isvc_ready(service_name, namespace=KFSERVING_TEST_NAMESPACE) # define canary endpoint spec, and then rollout 10% traffic to the canary version canary_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec(tensorflow=V1alpha2TensorflowSpec( storage_uri='gs://kfserving-samples/models/tensorflow/flowers-2', resources=V1ResourceRequirements(requests={ 'cpu': '100m', 'memory': '256Mi' }, limits={ 'cpu': '100m', 'memory': '256Mi' })))) KFServing.rollout_canary(service_name, canary=canary_endpoint_spec, percent=10, namespace=KFSERVING_TEST_NAMESPACE, watch=True, timeout_seconds=120) KFServing.wait_isvc_ready(service_name, namespace=KFSERVING_TEST_NAMESPACE) # Delete the InferenceService KFServing.delete(service_name, namespace=KFSERVING_TEST_NAMESPACE)
def test_pytorch(): service_name = 'isvc-pytorch' default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=1, pytorch=V1alpha2PyTorchSpec( storage_uri='gs://kfserving-samples/models/pytorch/cifar10', model_class_name="Net", resources=V1ResourceRequirements(requests={ 'cpu': '100m', 'memory': '2Gi', 'nvidia.com/gpu': '1' }, limits={ 'cpu': '100m', 'memory': '2Gi', 'nvidia.com/gpu': '1' })))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta( name=service_name, namespace=KFSERVING_TEST_NAMESPACE, annotations={ 'serving.kubeflow.org/gke-accelerator': 'nvidia-tesla-k80' }), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing.create(isvc) try: KFServing.wait_isvc_ready(service_name, namespace=KFSERVING_TEST_NAMESPACE) except RuntimeError as e: print( KFServing.api_instance.get_namespaced_custom_object( "serving.knative.dev", "v1", KFSERVING_TEST_NAMESPACE, "services", service_name + "-predictor-default")) pods = KFServing.core_api.list_namespaced_pod( KFSERVING_TEST_NAMESPACE, label_selector='serving.kubeflow.org/inferenceservice={}'.format( service_name)) for pod in pods.items: print(pod) raise e probs = predict(service_name, './data/cifar_input.json') assert (np.argmax(probs) == 3) KFServing.delete(service_name, KFSERVING_TEST_NAMESPACE)
def test_lightgbm_kfserving(): service_name = "isvc-lightgbm" default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=1, lightgbm=V1alpha2LightGBMSpec( storage_uri="gs://kfserving-examples/models/lightgbm", resources=V1ResourceRequirements( requests={ "cpu": "100m", "memory": "256Mi" }, limits={ "cpu": "100m", "memory": "256Mi" }, ), ), )) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta(name=service_name, namespace=KFSERVING_TEST_NAMESPACE), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec), ) KFServing.create(isvc) try: KFServing.wait_isvc_ready(service_name, namespace=KFSERVING_TEST_NAMESPACE, version=constants.KFSERVING_VERSION) except RuntimeError as e: KFServing.wait_isvc_ready(service_name, namespace=KFSERVING_TEST_NAMESPACE, version=constants.KFSERVING_V1BETA1_VERSION) try: res = predict(service_name, "./data/iris_input_v3.json", version=constants.KFSERVING_VERSION) except KeyError: res = predict(service_name, "./data/iris_input_v3.json", version=constants.KFSERVING_V1BETA1_VERSION) assert res["predictions"][0][0] > 0.5 KFServing.delete(service_name, KFSERVING_TEST_NAMESPACE)
def test_tensorflow_kfserving(): default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( tensorflow=V1alpha2TensorflowSpec( storage_uri='gs://kfserving-samples/models/tensorflow/flowers', resources=V1ResourceRequirements( requests={'cpu': '100m', 'memory': '256Mi'}, limits={'cpu': '100m', 'memory': '256Mi'})))) isvc = V1alpha2InferenceService(api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta( name='isvc-tensorflow-test', namespace='kfserving-ci-e2e-test'), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing.create(isvc) wait_for_isvc_ready('isvc-tensorflow-test')
def test_tabular_explainer(): service_name = 'aix-explainer' default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( custom=V1alpha2CustomSpec( container=V1Container( name="predictor", image='aipipeline/rf-predictor:0.4.0', command=["python", "-m", "rfserver", "--model_name", "aix-explainer"], resources=V1ResourceRequirements( requests={'cpu': '500m', 'memory': '1Gi'}, limits={'cpu': '500m', 'memory': '1Gi'}) ))), explainer=V1alpha2ExplainerSpec( min_replicas=1, aix=V1alpha2AIXExplainerSpec( type='LimeImages', resources=V1ResourceRequirements( requests={'cpu': '500m', 'memory': '1Gi'}, limits={'cpu': '500m', 'memory': '1Gi'})))) isvc = V1alpha2InferenceService(api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta( name=service_name, namespace=KFSERVING_TEST_NAMESPACE), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing.create(isvc) try: KFServing.wait_isvc_ready(service_name, namespace=KFSERVING_TEST_NAMESPACE, timeout_seconds=720) except RuntimeError as e: logging.info(KFServing.api_instance.get_namespaced_custom_object("serving.knative.dev", "v1", KFSERVING_TEST_NAMESPACE, "services", service_name + "-predictor-default")) pods = KFServing.core_api.list_namespaced_pod(KFSERVING_TEST_NAMESPACE, label_selector='serving.kubeflow.org/inferenceservice={}'.format(service_name)) for pod in pods.items: logging.info(pod) raise e res = predict(service_name, './data/mnist_input.json') assert(res["predictions"] == [[0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0, 0.0]]) mask = explain_aix(service_name, './data/mnist_input.json') percent_in_mask = np.count_nonzero(mask) / np.size(np.array(mask)) assert(percent_in_mask > 0.6) KFServing.delete(service_name, KFSERVING_TEST_NAMESPACE)
def test_transformer(): service_name = 'isvc-transformer' default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=1, pytorch=V1alpha2PyTorchSpec( storage_uri='gs://kfserving-samples/models/pytorch/cifar10', model_class_name="Net", resources=V1ResourceRequirements( requests={'cpu': '100m', 'memory': '256Mi'}, limits={'cpu': '100m', 'memory': '256Mi'}))), transformer=V1alpha2TransformerSpec( min_replicas=1, custom=V1alpha2CustomSpec( container=V1Container( image='809251082950.dkr.ecr.us-west-2.amazonaws.com/kfserving/image-transformer:latest', name='kfserving-container', resources=V1ResourceRequirements( requests={'cpu': '100m', 'memory': '256Mi'}, limits={'cpu': '100m', 'memory': '256Mi'}))))) isvc = V1alpha2InferenceService(api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta( name=service_name, namespace=KFSERVING_TEST_NAMESPACE), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing.create(isvc) try: KFServing.wait_isvc_ready(service_name, namespace=KFSERVING_TEST_NAMESPACE) except RuntimeError as e: print(KFServing.api_instance.get_namespaced_custom_object("serving.knative.dev", "v1", KFSERVING_TEST_NAMESPACE, "services", service_name + "-predictor")) pods = KFServing.core_api.list_namespaced_pod(KFSERVING_TEST_NAMESPACE, label_selector='serving.kubeflow.org/inferenceservice={}' .format(service_name)) for pod in pods.items: print(pod) raise e res = predict(service_name, './data/transformer.json') assert(np.argmax(res["predictions"]) == 3) KFServing.delete(service_name, KFSERVING_TEST_NAMESPACE)
def run(self): parser = argparse.ArgumentParser() parser.add_argument('--namespace', required=False, default='kubeflow') # pvc://${PVCNAME}/dir parser.add_argument('--storage_uri', required=False, default='/mnt/export') parser.add_argument('--name', required=False, default='kfserving-sample') args = parser.parse_args() namespace = args.namespace serving_name = args.name api_version = constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec(tensorflow=V1alpha2TensorflowSpec( storage_uri=args.storage_uri, resources=V1ResourceRequirements(requests={ 'cpu': '100m', 'memory': '1Gi' }, limits={ 'cpu': '100m', 'memory': '1Gi' })))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta(name=serving_name, namespace=namespace), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing = KFServingClient() KFServing.create(isvc) print('waiting 5 sec for Creating InferenceService') time.sleep(30) KFServing.get(serving_name, namespace=namespace, watch=True, timeout_seconds=300)
def test_tabular_explainer(): service_name = 'isvc-explainer-tabular' default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( sklearn=V1alpha2SKLearnSpec( storage_uri='gs://seldon-models/sklearn/income/model', resources=V1ResourceRequirements( requests={'cpu': '100m', 'memory': '1Gi'}, limits={'cpu': '100m', 'memory': '1Gi'}))), explainer=V1alpha2ExplainerSpec( min_replicas=1, alibi=V1alpha2AlibiExplainerSpec( type='AnchorTabular', storage_uri='gs://seldon-models/sklearn/income/alibi/0.4.0', resources=V1ResourceRequirements( requests={'cpu': '100m', 'memory': '1Gi'}, limits={'cpu': '100m', 'memory': '1Gi'})))) isvc = V1alpha2InferenceService(api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta( name=service_name, namespace=KFSERVING_TEST_NAMESPACE), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing.create(isvc) try: KFServing.wait_isvc_ready(service_name, namespace=KFSERVING_TEST_NAMESPACE, timeout_seconds=300) except RuntimeError as e: logging.info(KFServing.api_instance.get_namespaced_custom_object("serving.knative.dev", "v1", KFSERVING_TEST_NAMESPACE, "services", service_name + "-predictor-default")) pods = KFServing.core_api.list_namespaced_pod(KFSERVING_TEST_NAMESPACE, label_selector='serving.kubeflow.org/inferenceservice={}'.format(service_name)) for pod in pods.items: logging.info(pod) raise e res = predict(service_name, './data/income_input.json') assert(res["predictions"] == [0]) precision = explain(service_name, './data/income_input.json') assert(precision > 0.9) KFServing.delete(service_name, KFSERVING_TEST_NAMESPACE)
def deploy_model(namespace: str, trained_model_path: InputPath(str)): from kubernetes import client from kfserving import KFServingClient from kfserving import constants from kfserving import V1alpha2EndpointSpec from kfserving import V1alpha2PredictorSpec from kfserving import V1alpha2TensorflowSpec from kfserving import V1alpha2InferenceServiceSpec from kfserving import V1alpha2InferenceService from kubernetes.client import V1ResourceRequirements api_version = constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION inference_service_name = 'inference112cbk' default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec(tensorflow=V1alpha2TensorflowSpec( storage_uri=trained_model_path, resources=V1ResourceRequirements(requests={ 'cpu': '100m', 'memory': '1Gi' }, limits={ 'cpu': '100m', 'memory': '1Gi' })))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta(name=inference_service_name, namespace=namespace), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing = KFServingClient() KFServing.create(isvc) print('Inference service ' + inference_service_name + " created ...") KFServing.get(inference_service_name, namespace=namespace, watch=True, timeout_seconds=120) print('Model deployed')
def deploy_model(namespace,trained_model_path): logging.basicConfig(level=logging.INFO) logging.info('Starting deploy model step ..') logging.info('Input data ..') logging.info('namespace:{}'.format(namespace)) logging.info('trained_model_path:{}'.format(trained_model_path)) logging.info('STEP: DEPLOY MODEL (1/2) Generating definition..') api_version = constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION now = datetime.datetime.utcnow().strftime("%Y%m%d%H%M%S") inference_service_name = 'simple-model'+now default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( tensorflow=V1alpha2TensorflowSpec( storage_uri=trained_model_path, resources=V1ResourceRequirements( requests={'cpu': '100m', 'memory': '1Gi'}, limits={'cpu': '100m', 'memory': '1Gi'})))) isvc = V1alpha2InferenceService(api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta( name=inference_service_name, annotations= { 'sidecar.istio.io/inject': 'false', 'autoscaling.knative.dev/target': '1' }, namespace=namespace), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) #velascoluis: sidecar is disabled by https://github.com/knative/serving/issues/6829 #Note: make sure trained model path starts with file:// or gs:// KFServing = KFServingClient() logging.info('STEP: DEPLOY MODEL (2/2) Creating inference service..') KFServing.create(isvc) logging.info('Inference service ' + inference_service_name + " created ...") KFServing.get(inference_service_name, namespace=namespace, watch=True, timeout_seconds=120) logging.info('Deploy model step finished')
def test_xgboost_kfserving(): service_name = 'isvc-xgboost' default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=1, xgboost=V1alpha2XGBoostSpec( storage_uri='gs://kfserving-samples/models/xgboost/iris', resources=V1ResourceRequirements( requests={'cpu': '100m', 'memory': '256Mi'}, limits={'cpu': '100m', 'memory': '256Mi'})))) isvc = V1alpha2InferenceService(api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta( name=service_name, namespace=KFSERVING_TEST_NAMESPACE), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing.create(isvc) KFServing.wait_isvc_ready(service_name, namespace=KFSERVING_TEST_NAMESPACE) probs = predict(service_name, './data/iris_input.json') assert(probs == [1, 1]) KFServing.delete(service_name, KFSERVING_TEST_NAMESPACE)
def generate_isvc(self): """ generate InferenceService """ api_version = constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION default_predictor, canary_predictor = None, None if self.framework == 'custom': default_predictor = self.generate_predictor_spec( self.framework, container=self.custom_default_container) else: default_predictor = self.generate_predictor_spec( self.framework, storage_uri=self.default_storage_uri) if self.framework != 'custom' and self.canary_storage_uri is not None: canary_predictor = self.generate_predictor_spec( self.framework, storage_uri=self.canary_storage_uri) if self.framework == 'custom' and self.custom_canary_container is not None: canary_predictor = self.generate_predictor_spec( self.framework, container=self.custom_canary_container) if canary_predictor: isvc_spec = V1alpha2InferenceServiceSpec( default=V1alpha2EndpointSpec(predictor=default_predictor), canary=V1alpha2EndpointSpec(predictor=canary_predictor), canary_traffic_percent=self.canary_traffic_percent) else: isvc_spec = V1alpha2InferenceServiceSpec( default=V1alpha2EndpointSpec(predictor=default_predictor), canary_traffic_percent=self.canary_traffic_percent) return V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=k8s_client.V1ObjectMeta( name=self.isvc_name, generate_name=constants.KFSERVING_DEFAULT_NAME, namespace=self.namespace), spec=isvc_spec)
def deploy_model(namespace, model_file_name, gcp_bucket): api_version = constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION now = datetime.datetime.utcnow().strftime("%Y%m%d%H%M%S") inference_service_name = 'xgboost-r' + now default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=1, xgboost=V1alpha2XGBoostSpec( #storage_uri='gs://'+gcp_bucket+'/rmodel/'+model_file_name, storage_uri='gs://' + gcp_bucket + '/rmodel', resources=V1ResourceRequirements(requests={ 'cpu': '100m', 'memory': '1Gi' }, limits={ 'cpu': '100m', 'memory': '1Gi' })))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta( name=inference_service_name, namespace=namespace, annotations={'sidecar.istio.io/inject': 'false'}), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) #@velascoluis - annotation The sidecar.istio.io/inject: "false", otherwise the ingress does not work KFServing = KFServingClient() KFServing.create(isvc) KFServing.get(inference_service_name, namespace=namespace, watch=True, timeout_seconds=120)
def test_tensorflow_kfserving(): service_name = 'isvc-tensorflow' default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=1, tensorflow=V1alpha2TensorflowSpec( storage_uri='gs://kfserving-samples/models/tensorflow/flowers', resources=V1ResourceRequirements( requests={'cpu': '1', 'memory': '2Gi'}, limits={'cpu': '1', 'memory': '2Gi'})))) isvc = V1alpha2InferenceService(api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta( name=service_name, namespace=KFSERVING_TEST_NAMESPACE), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing.create(isvc) KFServing.wait_isvc_ready(service_name, namespace=KFSERVING_TEST_NAMESPACE) res = predict(service_name, './data/flower_input.json') assert(np.argmax(res["predictions"][0].get('scores')) == 0) # Delete the InferenceService KFServing.delete(service_name, namespace=KFSERVING_TEST_NAMESPACE)
def test_kfserving_logger(): msg_dumper = 'message-dumper' default_endpoint_spec = V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec( min_replicas=1, custom=V1alpha2CustomSpec(container=V1Container( name="kfserving-container", image= 'gcr.io/knative-releases/knative.dev/eventing-contrib/cmd/event_display', )))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta(name=msg_dumper, namespace=KFSERVING_TEST_NAMESPACE), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing.create(isvc) KFServing.wait_isvc_ready(msg_dumper, namespace=KFSERVING_TEST_NAMESPACE) service_name = 'isvc-logger' default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=1, logger=V1alpha2Logger( mode="all", url="http://message-dumper-predictor-default." + KFSERVING_TEST_NAMESPACE), sklearn=V1alpha2SKLearnSpec( storage_uri='gs://kfserving-samples/models/sklearn/iris', resources=V1ResourceRequirements(requests={ 'cpu': '100m', 'memory': '256Mi' }, limits={ 'cpu': '100m', 'memory': '256Mi' })))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta(name=service_name, namespace=KFSERVING_TEST_NAMESPACE), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing.create(isvc) KFServing.wait_isvc_ready(service_name, namespace=KFSERVING_TEST_NAMESPACE) res = predict(service_name, './data/iris_input.json') assert (res["predictions"] == [1, 1]) pods = KFServing.core_api.list_namespaced_pod( KFSERVING_TEST_NAMESPACE, label_selector='serving.kubeflow.org/inferenceservice={}'.format( msg_dumper)) for pod in pods.items: log = KFServing.core_api.read_namespaced_pod_log( name=pod.metadata.name, namespace=pod.metadata.namespace, container="kfserving-container") print(log) assert ("org.kubeflow.serving.inference.request" in log) assert ("org.kubeflow.serving.inference.response" in log) KFServing.delete(service_name, KFSERVING_TEST_NAMESPACE) KFServing.delete(msg_dumper, KFSERVING_TEST_NAMESPACE)
api_version = constants.KFSERVING_GROUP + "/" + constants.KFSERVING_VERSION default_endpoint_spec = V1alpha2EndpointSpec(predictor=V1alpha2PredictorSpec( tensorflow=V1alpha2TensorflowSpec( storage_uri="s3://anonymous-model-result/result/saved_model", resources=V1ResourceRequirements(requests={ "cpu": "100m", "memory": "1Gi" }, limits={ "cpu": "100m", "memory": "1Gi" })))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=client.V1ObjectMeta(name="mnist-kfserving", namespace=namespace), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) KFServing = KFServingClient() KFServing.set_credentials( storage_type="S3", namespace='anonymous', credentials_file='credentials', s3_profile="default", s3_endpoint="minio-service.kubeflow.svc.cluster.local:9000", s3_region="us-west-1", s3_use_https="0", s3_verify_ssl="0") KFServing.create(isvc)
def deploy(self, kfservice_id): mykfservice = db.session.query(KfService).filter_by( id=kfservice_id).first() namespace = conf.get('KFSERVING_NAMESPACE') crd_info = conf.get('CRD_INFO')['inferenceservice'] # 根据service生成container def make_container(service, mykfservice): from myapp.utils.py.py_k8s import K8s k8s = K8s() # 不部署,不需要配置集群信息 container = k8s.make_container( name=mykfservice.name + "-" + service.name, command=["sh", "-c", service.command] if service.command else None, args=None, volume_mount=None, image_pull_policy=conf.get('IMAGE_PULL_POLICY', 'Always'), image=service.images, working_dir=service.working_dir if service.working_dir else None, env=service.env, resource_memory=service.resource_memory, resource_cpu=service.resource_cpu, resource_gpu=service.resource_gpu, username=service.created_by.username) return container api_version = crd_info['group'] + '/' + crd_info['version'] default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=mykfservice.default_service.min_replicas, max_replicas=mykfservice.default_service.max_replicas, custom=V1alpha2CustomSpec(container=make_container( mykfservice.default_service, mykfservice)))) if mykfservice.default_service else None canary_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec( min_replicas=mykfservice.canary_service.min_replicas, max_replicas=mykfservice.canary_service.max_replicas, custom=V1alpha2CustomSpec(container=make_container( mykfservice.canary_service, mykfservice)))) if mykfservice.canary_service else None metadata = kubernetes.client.V1ObjectMeta( name=mykfservice.name, labels={ "app": mykfservice.name, "rtx-user": mykfservice.created_by.username }, namespace=namespace) isvc = V1alpha2InferenceService( api_version=api_version, kind=crd_info['kind'], metadata=metadata, spec=V1alpha2InferenceServiceSpec( default=default_endpoint_spec, canary=canary_endpoint_spec, canary_traffic_percent=mykfservice.canary_traffic_percent)) KFServing = KFServingClient() try: KFServing.delete(mykfservice.name, namespace=namespace, version=crd_info['version']) except Exception as e: print(e) KFServing.create(isvc, namespace=namespace, version=crd_info['version']) flash(category='warning', message='部署启动,一分钟后部署完成') return redirect('/kfservice_modelview/list/')
def main(): api_version = constants.KFSERVING_GROUP + '/' + constants.KFSERVING_VERSION default_endpoint_spec = V1alpha2EndpointSpec( predictor=V1alpha2PredictorSpec(custom=V1alpha2CustomSpec( container=V1Container( name="kfserving-container", image=FLAGS.image, env=[{ "name": "STORAGE_URI", "value": "%s" % FLAGS.storage_uri }], resources=V1ResourceRequirements( limits={"nvidia.com/gpu": FLAGS.gpus_to_inference}), command=["python"], args=[ "model.py", "--model-name", "%s" % FLAGS.inference_name, "--out_dir", "%s" % FLAGS.model_path, "--classes_file", "%s" % FLAGS.classes_file, ])))) isvc = V1alpha2InferenceService( api_version=api_version, kind=constants.KFSERVING_KIND, metadata=k8s_client.V1ObjectMeta(name=FLAGS.inference_name, namespace=FLAGS.namespace), spec=V1alpha2InferenceServiceSpec(default=default_endpoint_spec)) # Create inference service KFServing = KFServingClient() KFServing.create(isvc) time.sleep(2) # Check inference service KFServing.get(FLAGS.inference_name, namespace=FLAGS.namespace, watch=True, timeout_seconds=180) model_status = KFServing.get(FLAGS.inference_name, namespace=FLAGS.namespace) for condition in model_status["status"]["conditions"]: if condition['type'] == 'Ready': if condition['status'] == 'True': print('Model is ready') break else: print( 'Model is timed out, please check the inferenceservice events for more details.' ) exit(1) try: print( model_status["status"]["url"] + " is the knative domain header. $ISTIO_INGRESS_ENDPOINT are defined in the below commands" ) print("Sample test commands: ") print( "# Note: If Istio Ingress gateway is not served with LoadBalancer, use $CLUSTER_NODE_IP:31380 as the ISTIO_INGRESS_ENDPOINT" ) print( "ISTIO_INGRESS_ENDPOINT=$(kubectl -n istio-system get service istio-ingressgateway -o jsonpath='{.status.loadBalancer.ingress[0].ip}')" ) # model_status['status']['url'] is like http://flowers-sample.kubeflow.example.com/v1/models/flowers-sample url = re.compile(r"https?://") host, path = url.sub("", model_status["status"]["url"]).split("/", 1) print('curl -X GET -H "Host: ' + host + '" http://$ISTIO_INGRESS_ENDPOINT/' + path) except: print("Model is not ready, check the logs for the Knative URL status.") exit(1)