Exemple #1
0
def simulate(sim_mode, **params):
    ## Setup initialization parameters
    peppercorn_params = {'k_fast': 5e-7}
    kinda_params = {
        'stop_macrostate_mode': sim_mode,
        'start_macrostate_mode': 'ordered-complex'
    }

    ## Construct System object
    sstats = kinda.from_pil(PILPATH,
                            peppercorn_params=peppercorn_params,
                            kinda_params=kinda_params)

    ## Find relevant resting sets
    rs_InputA = sstats.get_restingset(complex_name='InA')
    rs_InputB = sstats.get_restingset(complex_name='InB')
    rs_OR = sstats.get_restingset(complex_name='OR')

    ## Get the relevant reactions with the OR gate complex
    rxns = [
        sstats.get_reaction(reactants=[rs_InputA, rs_OR],
                            spurious=False,
                            unproductive=False),
        sstats.get_reaction(reactants=[rs_InputB, rs_OR],
                            spurious=False,
                            unproductive=False)
    ]

    print "Reaction analysis order:"
    for i, rxn in enumerate(rxns):
        print i, rxn

    rxn_times = []
    for rxn in rxns:
        print "Analyzing", rxn

        start_time = time.time()

        ## Run simulations
        rxn_stats = sstats.get_stats(rxn)
        rxn_stats.get_k1(verbose=1, **params)
        rxn_stats.get_k2(verbose=1, **params)

        end_time = time.time()

        print "k1: {} +/- {}".format(rxn_stats.get_k1(max_sims=0),
                                     rxn_stats.get_k1_error(max_sims=0))
        print "k2: {} +/- {}".format(rxn_stats.get_k2(max_sims=0),
                                     rxn_stats.get_k2_error(max_sims=0))

        rxn_times.append(end_time - start_time)

        print "Finished analyzing {} in {} seconds\n".format(
            rxn, end_time - start_time)

    ## Store results
    kinda.export_data(sstats, '{}_{}.kinda'.format(OUTPUT_PREFIX, sim_mode))

    return sstats, zip(rxns, rxn_times)
Exemple #2
0
    c.name for c in restingset.complexes
]  # Get all conformation names in the resting set (most of the time there are only 1 or 2)
confs.append(
    None
)  # None refers to spurious conformations (that aren't similar to any expected conformations)
print "Conformation probabilities for resting set {0}".format(restingset)
for c in confs:
    p = rs_stats.get_conformation_prob(c, .025, max_sims=500)
    print "\t{0}: {1}%".format(c, p * 100)

## Getting the top 10 MFE structures
mfe_structs = rs_stats.get_top_MFE_structs(10)
print "Top 10 MFE structures for resting set {0}".format(restingset)
for i, s in enumerate(mfe_structs):
    print "\t{0}: {1} ({2})".format(i, s[0], s[1])

kinda.export_data(kinda_obj, 'analyze.db')
kinda_obj = kinda.import_data('analyze.db')

# DOES NOT WORK!!!
## Getting the (fractional) reactant depletion due to unproductive reactions
#unproductive_depletion = rs_stats.get_temp_depletion(0.5) # Get depletion with 50% error on any relevant reaction rate
## Getting the rate constant of reactant depletion due to spurious reactions (units: /s)
#spurious_depletion = rs_stats.get_perm_depletion(0.5) # Get depletion with 50% error on any relevant reaction rate

#### To get a system-level score, use the convenience functions in stats_utils.py
#kinda.statistics.stats_utils.calc_unproductive_rxn_score(kinda_obj)
#kinda.statistics.stats_utils.calc_spurious_rxn_score(kinda_obj)

print 'done'
Exemple #3
0
for i, r in enumerate(desired_rxns):
    print "\nAnalyzing desired reaction {}: {}".format(i, r)

    # Get stats object
    rxn_stats = sstats.get_stats(r)

    # Query k1 and k2 reaction rates to requested precision
    rxn_stats.get_k1(verbose=1, **params)
    rxn_stats.get_k2(verbose=1, **params_uni)
    print "k1: {} +/- {}".format(rxn_stats.get_k1(max_sims=0),
                                 rxn_stats.get_k1_error(max_sims=0))
    print "k2: {} +/- {}".format(rxn_stats.get_k2(max_sims=0),
                                 rxn_stats.get_k2_error(max_sims=0))

## Export all collected data  (we'll do it again later, but in case the system crashes...)
kinda.export_data(sstats, DATA_PATH)

## Simulate the most probable leak reactions, with the same accuracy goals.  We know they're there, so find them!

for i, r in enumerate(leak_rxns):
    print "\nAnalyzing potential leak reaction {}: {}".format(i, r)

    # Get stats object
    rxn_stats = sstats.get_stats(r)

    # Query k1 and k2 reaction rates to requested precision
    rxn_stats.get_k1(verbose=1, **params)
    rxn_stats.get_k2(verbose=1, **params_uni)
    print "k1: {} +/- {}".format(rxn_stats.get_k1(max_sims=0),
                                 rxn_stats.get_k1_error(max_sims=0))
    print "k2: {} +/- {}".format(rxn_stats.get_k2(max_sims=0),