Exemple #1
0
def test_model_singularity(model_name, source_name, batch_size, verbose=False):
    """kipoi test ...

    Args:
      model_name (str)
      source_name: source name
    """
    kipoi_cmd = [
        "kipoi", "test", f"{model_name}", f"--batch_size={batch_size}",
        "--source=kipoi"
    ]
    singularity_command(kipoi_cmd, model_name, {})
Exemple #2
0
def cli_predict(command, raw_args):
    """CLI interface to predict
    """
    assert command == "predict"
    parser = argparse.ArgumentParser('kipoi {}'.format(command),
                                     description='Run the model prediction.')
    add_model(parser)
    add_dataloader(parser, with_args=True)
    parser.add_argument('--batch_size', type=int, default=32,
                        help='Batch size to use in prediction')
    parser.add_argument("-n", "--num_workers", type=int, default=0,
                        help="Number of parallel workers for loading the dataset")
    parser.add_argument("-k", "--keep_inputs", action='store_true',
                        help="Keep the inputs in the output file. ")
    parser.add_argument("-l", "--layer",
                        help="Which output layer to use to make the predictions. If specified," +
                        "`model.predict_activation_on_batch` will be invoked instead of `model.predict_on_batch`")
    parser.add_argument("--singularity", action='store_true',
                        help="Run `kipoi predict` in the appropriate singularity container. "
                        "Containters will get downloaded to ~/.kipoi/envs/ or to "
                        "$SINGULARITY_CACHEDIR if set")
    parser.add_argument('-o', '--output', required=True, nargs="+",
                        help="Output files. File format is inferred from the file path ending. Available file formats are: " +
                        ", ".join(["." + k for k in writers.FILE_SUFFIX_MAP]))
    args = parser.parse_args(raw_args)

    dataloader_kwargs = parse_json_file_str_or_arglist(args.dataloader_args, parser)

    # setup the files
    if not isinstance(args.output, list):
        args.output = [args.output]
    for o in args.output:
        ending = o.split('.')[-1]
        if ending not in writers.FILE_SUFFIX_MAP:
            logger.error("File ending: {0} for file {1} not from {2}".
                         format(ending, o, writers.FILE_SUFFIX_MAP))
            sys.exit(1)
        dir_exists(os.path.dirname(o), logger)

    # singularity_command
    if args.singularity:
        from kipoi.cli.singularity import singularity_command
        logger.info("Running kipoi predict in the singularity container")
        # Drop the singularity flag
        raw_args = [x for x in raw_args if x != '--singularity']
        singularity_command(['kipoi', command] + raw_args,
                            args.model,
                            dataloader_kwargs,
                            output_files=args.output,
                            source=args.source,
                            dry_run=False)
        return None
    # --------------------------------------------
    # load model & dataloader
    model = kipoi.get_model(args.model, args.source)

    if args.dataloader is not None:
        Dl = kipoi.get_dataloader_factory(args.dataloader, args.dataloader_source)
    else:
        Dl = model.default_dataloader

    dataloader_kwargs = kipoi.pipeline.validate_kwargs(Dl, dataloader_kwargs)
    dl = Dl(**dataloader_kwargs)

    # setup batching
    it = dl.batch_iter(batch_size=args.batch_size,
                       num_workers=args.num_workers)

    # Setup the writers
    use_writers = []
    for output in args.output:
        writer = writers.get_writer(output, metadata_schema=dl.get_output_schema().metadata)
        if writer is None:
            logger.error("Unknown file format: {0}".format(ending))
            sys.exit()
        else:
            use_writers.append(writer)
    output_writers = writers.MultipleBatchWriter(use_writers)

    # Loop through the data, make predictions, save the output
    for i, batch in enumerate(tqdm(it)):
        # validate the data schema in the first iteration
        if i == 0 and not Dl.get_output_schema().compatible_with_batch(batch):
            logger.warning("First batch of data is not compatible with the dataloader schema.")

        # make the prediction
        if args.layer is None:
            pred_batch = model.predict_on_batch(batch['inputs'])
        else:
            pred_batch = model.predict_activation_on_batch(batch['inputs'], layer=args.layer)

        # write out the predictions, metadata (, inputs, targets)
        output_batch = prepare_batch(batch, pred_batch, keep_inputs=args.keep_inputs)
        output_writers.batch_write(output_batch)

    output_writers.close()
    logger.info('Done! Predictions stored in {0}'.format(",".join(args.output)))
Exemple #3
0
def cli_create_mutation_map(command, raw_args):
    """CLI interface to calculate mutation map data
    """
    assert command == "create_mutation_map"
    parser = argparse.ArgumentParser(
        'kipoi veff {}'.format(command),
        description='Predict effect of SNVs using ISM.')
    add_model(parser)
    add_dataloader(parser, with_args=True)
    parser.add_argument(
        '-r',
        '--regions_file',
        help='Region definition as VCF or bed file. Not a required input.')
    parser.add_argument('--batch_size',
                        type=int,
                        default=32,
                        help='Batch size to use in prediction')
    parser.add_argument(
        "-n",
        "--num_workers",
        type=int,
        default=0,
        help="Number of parallel workers for loading the dataset")
    parser.add_argument("-i",
                        "--install_req",
                        action='store_true',
                        help="Install required packages from requirements.txt")
    parser.add_argument(
        '-o',
        '--output',
        required=True,
        help="Output HDF5 file. To be used as input for plotting.")
    parser.add_argument(
        '-s',
        "--scores",
        default="diff",
        nargs="+",
        help=
        "Scoring method to be used. Only scoring methods selected in the model yaml file are"
        "available except for `diff` which is always available. Select scoring function by the"
        "`name` tag defined in the model yaml file.")
    parser.add_argument(
        '-k',
        "--score_kwargs",
        default="",
        nargs="+",
        help=
        "JSON definition of the kwargs for the scoring functions selected in --scores. The "
        "definiton can either be in JSON in the command line or the path of a .json file. The "
        "individual JSONs are expected to be supplied in the same order as the labels defined in "
        "--scores. If the defaults or no arguments should be used define '{}' for that respective "
        "scoring method.")
    parser.add_argument(
        '-l',
        "--seq_length",
        type=int,
        default=None,
        help=
        "Optional parameter: Model input sequence length - necessary if the model does not have a "
        "pre-defined input sequence length.")

    parser.add_argument(
        "--singularity",
        action='store_true',
        help="Run `kipoi predict` in the appropriate singularity container. "
        "Containters will get downloaded to ~/.kipoi/envs/ or to "
        "$SINGULARITY_CACHEDIR if set")

    args = parser.parse_args(raw_args)

    # extract args for kipoi.variant_effects.predict_snvs
    print("DL ARGS", args.dataloader_args)
    dataloader_arguments = parse_json_file_str_or_arglist(args.dataloader_args)
    #dataloader_arguments = parse_json_file_str(args.dataloader_args)

    if args.output is None:
        raise Exception("Output file `--output` has to be set!")

    if args.singularity:
        from kipoi.cli.singularity import singularity_command
        logger.info(
            "Running kipoi veff in the singularity container".format(command))
        # Drop the singularity flag
        raw_args = [x for x in raw_args if x != '--singularity']
        singularity_command(['kipoi', 'veff', command] + raw_args,
                            args.model,
                            dataloader_arguments,
                            output_files=args.output,
                            source=args.source,
                            dry_run=False)
        return None

    # --------------------------------------------
    # install args
    if args.install_req:
        kipoi.pipeline.install_model_requirements(args.model,
                                                  args.source,
                                                  and_dataloaders=True)
    # load model & dataloader
    model = kipoi.get_model(args.model, args.source)

    regions_file = os.path.realpath(args.regions_file)
    output = os.path.realpath(args.output)
    with cd(model.source_dir):
        if not os.path.exists(regions_file):
            raise Exception("Regions inputs file does not exist: %s" %
                            args.regions_file)

        # Check that all the folders exist
        file_exists(regions_file, logger)
        dir_exists(os.path.dirname(output), logger)

        if args.dataloader is not None:
            Dl = kipoi.get_dataloader_factory(args.dataloader,
                                              args.dataloader_source)
        else:
            Dl = model.default_dataloader

    if not isinstance(args.scores, list):
        args.scores = [args.scores]

    # TODO - why is this function not a method of the model class?
    dts = get_scoring_fns(model, args.scores, args.score_kwargs)

    # Load effect prediction related model info
    model_info = kipoi_veff.ModelInfoExtractor(model, Dl)
    manual_seq_len = args.seq_length

    # Select the appropriate region generator and vcf or bed file input
    args.file_format = regions_file.split(".")[-1]
    bed_region_file = None
    vcf_region_file = None
    bed_to_region = None
    vcf_to_region = None
    if args.file_format == "vcf" or regions_file.endswith("vcf.gz"):
        vcf_region_file = regions_file
        if model_info.requires_region_definition:
            # Select the SNV-centered region generator
            vcf_to_region = kipoi_veff.SnvCenteredRg(model_info,
                                                     seq_length=manual_seq_len)
            logger.info('Using variant-centered sequence generation.')
    elif args.file_format == "bed":
        if model_info.requires_region_definition:
            # Select the SNV-centered region generator
            bed_to_region = kipoi_veff.BedOverlappingRg(
                model_info, seq_length=manual_seq_len)
            logger.info('Using bed-file based sequence generation.')
        bed_region_file = regions_file
    else:
        raise Exception("")

    if model_info.use_seq_only_rc:
        logger.info(
            'Model SUPPORTS simple reverse complementation of input DNA sequences.'
        )
    else:
        logger.info(
            'Model DOES NOT support simple reverse complementation of input DNA sequences.'
        )

    from kipoi_veff.mutation_map import _generate_mutation_map
    mdmm = _generate_mutation_map(
        model,
        Dl,
        vcf_fpath=vcf_region_file,
        bed_fpath=bed_region_file,
        batch_size=args.batch_size,
        num_workers=args.num_workers,
        dataloader_args=dataloader_arguments,
        vcf_to_region=vcf_to_region,
        bed_to_region=bed_to_region,
        evaluation_function_kwargs={'diff_types': dts},
    )
    mdmm.save_to_file(output)

    logger.info('Successfully generated mutation map data')
Exemple #4
0
def cli_score_variants(command, raw_args):
    """CLI interface to score variants
    """
    # Updated argument names:
    # - scoring -> scores
    # - --vcf_path -> --input_vcf, -i
    # - --out_vcf_fpath -> --output_vcf, -o
    # - --output -> -e, --extra_output
    # - remove - -install_req
    # - scoring_kwargs -> score_kwargs
    AVAILABLE_FORMATS = [k for k in writers.FILE_SUFFIX_MAP if k != 'bed']
    assert command == "score_variants"
    parser = argparse.ArgumentParser(
        'kipoi veff {}'.format(command),
        description='Predict effect of SNVs using ISM.')
    parser.add_argument('model', help='Model name.')
    parser.add_argument(
        '--source',
        default="kipoi",
        choices=list(kipoi.config.model_sources().keys()),
        help='Model source to use. Specified in ~/.kipoi/config.yaml' +
        " under model_sources. " +
        "'dir' is an additional source referring to the local folder.")

    add_dataloader(parser=parser, with_args=True)

    parser.add_argument('-i', '--input_vcf', required=True, help='Input VCF.')
    parser.add_argument('-o',
                        '--output_vcf',
                        help='Output annotated VCF file path.',
                        default=None)
    parser.add_argument('--batch_size',
                        type=int,
                        default=32,
                        help='Batch size to use in prediction')
    parser.add_argument(
        "-n",
        "--num_workers",
        type=int,
        default=0,
        help="Number of parallel workers for loading the dataset")
    parser.add_argument(
        '-r',
        '--restriction_bed',
        default=None,
        help="Regions for prediction can only be subsets of this bed file")
    parser.add_argument(
        '-e',
        '--extra_output',
        type=str,
        default=None,
        required=False,
        help=
        "Additional output files in other (non-vcf) formats. File format is inferred from the file path ending"
        + ". Available file formats are: {0}".format(", ".join(
            ["." + k for k in AVAILABLE_FORMATS])))
    parser.add_argument(
        '-s',
        "--scores",
        default="diff",
        nargs="+",
        help=
        "Scoring method to be used. Only scoring methods selected in the model yaml file are"
        "available except for `diff` which is always available. Select scoring function by the"
        "`name` tag defined in the model yaml file.")
    parser.add_argument(
        '-k',
        "--score_kwargs",
        default="",
        nargs="+",
        help=
        "JSON definition of the kwargs for the scoring functions selected in --scoring. The "
        "definiton can either be in JSON in the command line or the path of a .json file. The "
        "individual JSONs are expected to be supplied in the same order as the labels defined in "
        "--scoring. If the defaults or no arguments should be used define '{}' for that respective "
        "scoring method.")
    parser.add_argument(
        '-l',
        "--seq_length",
        type=int,
        default=None,
        help=
        "Optional parameter: Model input sequence length - necessary if the model does not have a "
        "pre-defined input sequence length.")
    parser.add_argument(
        '--std_var_id',
        action="store_true",
        help="If set then variant IDs in the annotated"
        " VCF will be replaced with a standardised, unique ID.")

    parser.add_argument(
        "--model_outputs",
        type=str,
        default=None,
        nargs="+",
        help=
        "Optional parameter: Only return predictions for the selected model outputs. Naming"
        "according to the definition in model.yaml > schema > targets > column_labels"
    )

    parser.add_argument(
        "--model_outputs_i",
        type=int,
        default=None,
        nargs="+",
        help=
        "Optional parameter: Only return predictions for the selected model outputs. Give integer"
        "indices of the selected model output(s).")

    parser.add_argument(
        "--singularity",
        action='store_true',
        help="Run `kipoi predict` in the appropriate singularity container. "
        "Containters will get downloaded to ~/.kipoi/envs/ or to "
        "$SINGULARITY_CACHEDIR if set")

    args = parser.parse_args(raw_args)

    # OBSOLETE
    # Make sure all the multi-model arguments like source, dataloader etc. fit together
    #_prepare_multi_model_args(args)

    # Check that all the folders exist
    file_exists(args.input_vcf, logger)

    if args.output_vcf is None and args.extra_output is None:
        logger.error(
            "One of the two needs to be specified: --output_vcf or --extra_output"
        )
        sys.exit(1)

    if args.extra_output is not None:
        dir_exists(os.path.dirname(args.extra_output), logger)
        ending = args.extra_output.split('.')[-1]
        if ending not in AVAILABLE_FORMATS:
            logger.error("File ending: {0} for file {1} not from {2}".format(
                ending, args.extra_output, AVAILABLE_FORMATS))
            sys.exit(1)

    # singularity_command
    if args.singularity:
        from kipoi.cli.singularity import singularity_command
        logger.info(
            "Running kipoi veff {} in the singularity container".format(
                command))

        # Drop the singularity flag
        raw_args = [x for x in raw_args if x != '--singularity']

        dataloader_kwargs = parse_json_file_str_or_arglist(
            args.dataloader_args)

        # create output files
        output_files = []
        if args.output_vcf is not None:
            output_files.append(args.output_vcf)
        if args.extra_output is not None:
            output_files.append(args.extra_output)

        singularity_command(['kipoi', 'veff', command] + raw_args,
                            model=args.model,
                            dataloader_kwargs=dataloader_kwargs,
                            output_files=output_files,
                            source=args.source,
                            dry_run=False)
        return None

    if not isinstance(args.scores, list):
        args.scores = [args.scores]

    score_kwargs = []
    if len(args.score_kwargs) > 0:
        score_kwargs = args.score_kwargs
        if len(args.scores) >= 1:
            # Check if all scoring functions should be used:
            if args.scores == ["all"]:
                if len(score_kwargs) >= 1:
                    raise ValueError(
                        "`--score_kwargs` cannot be defined in combination will `--scoring all`!"
                    )
            else:
                score_kwargs = [parse_json_file_str(el) for el in score_kwargs]
                if not len(args.score_kwargs) == len(score_kwargs):
                    raise ValueError(
                        "When defining `--score_kwargs` a JSON representation of arguments (or the "
                        "path of a file containing them) must be given for every "
                        "`--scores` function.")

    # VCF writer
    output_vcf_model = None
    if args.output_vcf is not None:
        dir_exists(os.path.dirname(args.output_vcf), logger)
        output_vcf_model = args.output_vcf

    # Other writers
    if args.extra_output is not None:
        dir_exists(os.path.dirname(args.extra_output), logger)
        extra_output = args.extra_output
        writer = writers.get_writer(extra_output, metadata_schema=None)
        assert writer is not None
        extra_writers = [SyncBatchWriter(writer)]
    else:
        extra_writers = []

    dataloader_arguments = parse_json_file_str_or_arglist(args.dataloader_args)

    # --------------------------------------------
    # load model & dataloader
    model = kipoi.get_model(args.model, args.source)

    if args.dataloader is not None:
        Dl = kipoi.get_dataloader_factory(args.dataloader,
                                          args.dataloader_source)
    else:
        Dl = model.default_dataloader

    # Load effect prediction related model info
    model_info = kipoi_veff.ModelInfoExtractor(model, Dl)

    if model_info.use_seq_only_rc:
        logger.info(
            'Model SUPPORTS simple reverse complementation of input DNA sequences.'
        )
    else:
        logger.info(
            'Model DOES NOT support simple reverse complementation of input DNA sequences.'
        )

    if output_vcf_model is not None:
        logger.info('Annotated VCF will be written to %s.' %
                    str(output_vcf_model))

    model_outputs = None
    if args.model_outputs is not None:
        model_outputs = args.model_outputs

    elif args.model_outputs_i is not None:
        model_outputs = args.model_outputs_i

    kipoi_veff.score_variants(model,
                              dataloader_arguments,
                              args.input_vcf,
                              output_vcf=output_vcf_model,
                              output_writers=extra_writers,
                              scores=args.scores,
                              score_kwargs=score_kwargs,
                              num_workers=args.num_workers,
                              batch_size=args.batch_size,
                              seq_length=args.seq_length,
                              std_var_id=args.std_var_id,
                              restriction_bed=args.restriction_bed,
                              return_predictions=False,
                              model_outputs=model_outputs)

    logger.info('Successfully predicted samples')
Exemple #5
0
def test_singularity_command_dry_run():
    singularity_command(['kipoi', 'test', 'Basset', '--source=kipoi'],
                        'Basset', {},
                        dry_run=True)