Exemple #1
0
def negativeExamples(task_planner, fe, start_state, esdc, ggg, name, labeled_states):

    results = task_planner.find_plan(start_state, [ggg], save_state_tree=True,
                                     search_depth_event=4)
    observations = []
    labeled_actions = [decompile([(a, s)]) for a, s in labeled_states] 
    for i, (cost, state, ggg) in enumerate(results):
        state_sequence = task_planner.state_sequence(state)
        actions = [decompile([(a, s)]) for a, s in state_sequence] 
        overlap = False
        for a in actions:
            if a in labeled_actions:
                overlap = True
        #if not overlap or len(actions) != len(labeled_actions):
        if labeled_states[-1][1] != state_sequence[-1][1]:
            features = fe.features(ggg, ggg.factors[0], state_sequence)
            example_id = "%s_%d_neg" % (name, i)
            obs = dataset.ContinuousObservation(example_id, False, False, 
                                                features, sdcs=[esdc])
            observations.append(obs)
        
    return observations
Exemple #2
0
    def sendInstructionToCfb(self):
        entry = self.instructionModel.selectedEntry()
        esdc, ggg = self.recipe_manager.make_ggg_for_instruction(entry.text)
        self.costFunctionBrowser.gggs = [ggg]
        self.costFunctionBrowser.esdcs = [esdc]

        self.costFunctionBrowser.followCommand(entry.text,
                                               state=entry.start_state,
                                               esdcs=[esdc])

        for plan in self.costFunctionBrowser.plansList:
            result = self.recipe_manager.sequence(plan)
            string = planningLanguage.decompile(result)
            print "planning language", string
Exemple #3
0
    def inferPlan(self):
        print "follow command"
        recipe_text = str(self.recipeTextEdit.toPlainText())
        sequence = self.recipe_manager.find_plan(recipe_text, self.start_state)
        entries = []
        for i, (instruction, states, cost) in enumerate(sequence):
            if i == 0:
                start_state = self.start_state
            else:
                start_state = sequence[i - 1][1][-1][1]
            annotation = planningLanguage.decompile(states)

            entry = instructionModel.Entry(i, instruction.text, annotation,
                                           start_state, cost)
            entries.append(entry)
        self.instructionModel.setData(entries)
Exemple #4
0
    def evaluateEndToEnd(self, targetRecipe, useBeam=True):
        #A list of (planningLanguage, is_correct) tuples. Used mainly for GUI
        completePath = []

        self.totalCount += 1
        model_fname = "kitchenModel_1.5.pck"
        training_set = pickle_util.load("training.pck")
        rm = recipeManager.RecipeManager(model_fname)
        pl = planningLanguage.PlanningLanguage()
        print "\nEvaluating (end-to-end):", targetRecipe.name
        recipeText = targetRecipe.instruction_text
        initialState = targetRecipe.start_state

        if useBeam:
            inferredPlan = rm.find_beam_plan(recipeText, initialState)
        else:
            inferredPlan = rm.find_plan(recipeText, initialState)

        print "\ninferred", inferredPlan
        actualEndState = inferredPlan[-1][1][-1][1]
        print "\ndesired states", targetRecipe.states

        desiredEndState = targetRecipe.states[-1][-1][1]

        plInferredPath = ""
        for i in inferredPlan:
            plInferredPath = plInferredPath + " | " + planningLanguage.decompile(
                i[1])
        print "\nPL inferred:", plInferredPath
        plActual = ""
        for i in targetRecipe.instructions:
            plActual = plActual + " | " + i[1]
        print "\nPL Desired:", plActual, "\n"
        #print desiredEndState
        #print "end state", actualEndState

        if desiredEndState == actualEndState:
            self.successCount += 1
            print "\n\nResults for the End-to-End evaluation for :", targetRecipe.name
            print "Success"
        else:
            print "\nResults for the End-to-End evaluation for :", targetRecipe.name
            print "Failure"
        return 0
Exemple #5
0
    def evaluateInstructions(self, targetRecipe):
        #Can a single instruction be interpreted as multiple instructions? Does it even matter?
        model_fname = "kitchenModel_1.5.pck"
        rm = recipeManager.RecipeManager(model_fname)
        pl = planningLanguage.PlanningLanguage()
        tc = 0
        sc = 0
        nsc = 0

        #A list of (planningLanguage, is_correct) tuples. Used mainly for GUI
        completePath = []

        print "Evaluating (instruction-level): " + targetRecipe.name
        for i in range(len(targetRecipe.instructions)):

            self.totalCount += 1
            tc += 1
            instruction = targetRecipe.instructions[i]
            #print "instruction", instruction
            initialState = targetRecipe.idx_to_start_state(i)
            instructionInferredPlan = rm.find_plan(instruction[0],
                                                   initialState)
            desiredPlan = pl.compileAnnotation(instruction[1], initialState)
            desiredEndState = desiredPlan[-1][1]

            if len(instructionInferredPlan) == 0:
                #print "Zero length instruction for:", instruction
                if len(desiredPlan) == 1:
                    if desiredPlan[-1][0].name == "noop":
                        self.noopSuccessCount += 1
                        nsc += 1
                        completePath.append(("| noop()", True))
                    else:
                        completePath.append(("None", False))
                else:
                    completePath.append(("None", False))
            else:
                #print "inferred plan", instructionInferredPlan
                actualEndState = instructionInferredPlan[-1][1][-1][1]
                #print "actualEndState", actualEndState
                #plInferredPath = planningLanguage.decompile(instructionInferredPlan[-1][1])
                plInferredPath = ""
                for i in instructionInferredPlan:
                    plInferredPath = plInferredPath + " | " + planningLanguage.decompile(
                        i[1])
                if desiredEndState == actualEndState:
                    self.successCount += 1
                    sc += 1
                    print instructionInferredPlan
                    completePath.append((plInferredPath, True))
                else:
                    completePath.append((plInferredPath, False))
                    print "State is not the same for instruction", instruction
                    print "Inferred path was: ", planningLanguage.decompile(
                        instructionInferredPlan[0][1])
                    ##                    print "Desired mixing bowl:", desiredEndState.mixing_bowl
                    ##                    print "Actual mixing bowl:", actualEndState.mixing_bowl
                    print "\n"

        print "\n\nResults for the instruction-level evaluation of :", targetRecipe.name
        print "Total Instructions:", tc, "\nSuccess:", sc
        print "Noop Success:", nsc
        print "Failures:", tc - (sc + nsc), "\n\n"
        return completePath