def create_mesh(self): """ Create real mesh object from the geometry and material """ max_faces = 65530//3 #geometries = [] start = 0 while(True): _faces=[] _vertices = [] if (len(self.stl_mesh.v0)-start) >= max_faces: print("Faces are more than max") length = max_faces # # mesh = STLMesh(self.stl_mesh.v0[start:start+length], self.stl_mesh.v1[start:start+length], self.stl_mesh.v2[start:start+length], self.stl_mesh.normals[start:start+length], # self.material) # # self.add(mesh) _vertices = np.concatenate((self.stl_mesh.v0[start:start+length],self.stl_mesh.v1[start:start+length],self.stl_mesh.v2[start:start+length])) for i in range(length): f3 = Face3(i,i+length, i+ length*2) f3.vertex_normals = [self.stl_mesh.normals[start+i],self.stl_mesh.normals[start+i],self.stl_mesh.normals[start+i]] _faces.append(f3) geo = Geometry() geo.vertices = _vertices geo.faces = _faces mesh = Mesh(geo, self.material) self.add(mesh) start = start+length else: length = len(self.stl_mesh.v0)-start _vertices = np.concatenate((self.stl_mesh.v0[start:],self.stl_mesh.v1[start:],self.stl_mesh.v2[start:])) for i in range(length): f3 = Face3(i,i+length, i+ length*2) f3.vertex_normals = [self.stl_mesh.normals[i+start],self.stl_mesh.normals[i+start],self.stl_mesh.normals[i+start]] _faces.append(f3) geo = Geometry() geo.vertices = _vertices geo.faces = _faces #geometries.append(geo) mesh = Mesh(geo, self.material) self.add(mesh) # length = max_faces # # mesh = STLMesh(self.stl_mesh.v0[start:], self.stl_mesh.v1[start:], self.stl_mesh.v2[start:], self.stl_mesh.normals[start:], # self.material) # # self.add(mesh) break return self
def create_cube(self): cube_geo = BoxGeometry(1, 1, 1) # BoxGeometry(random.randint(5, 15)/10, random.randint(5, 15)/10, random.randint(5, 15)/10) cube_mat = Material( color=(random.randint(0, 100) / 100, random.randint(0, 100) / 100, random.randint(0, 100) / 100)) cube = Mesh( geometry=cube_geo, material=cube_mat ) cube.pos.z = -5 cube.rotation.x = random.randint(0, 360) self.scene.add(cube) Clock.schedule_interval(lambda *args: self.rotate_cube(cube), .01) # noinspection PyProtectedMember self.renderer._instructions.add(cube.as_instructions())
def build(self): root = FloatLayout() self.renderer = Renderer(shader_file=shader_file) self.renderer.set_clear_color((.16, .30, .44, 1.)) scene = Scene() # geometry = CylinderGeometry(0.5, 2) geometry = SphereGeometry(1) # geometry = BoxGeometry(1, 1, 1) material = Material(color=(0.3, 0., 0.3), diffuse=(0.3, 0.3, 0.3), specular=(0., 0., 0.)) loader = STLLoader() obj = loader.load(stl_file, material) self.item = obj scene.add(self.item) self.cube = Mesh(geometry, material) self.item.pos.z = -1.5 #self.cube.pos.z=-5 camera = PerspectiveCamera(75, 0.3, 0.5, 1000) #camera = OrthographicCamera() #scene.add(self.cube) self.renderer.render(scene, camera) root.add_widget(self.renderer) Clock.schedule_interval(self._rotate_cube, 1 / 20) self.renderer.bind(size=self._adjust_aspect) return root
def build(self): root = FloatLayout() self.renderer = Renderer() scene = Scene() # load stl file mesh_a = mesh.Mesh.from_file('./meshes/base_link.STL') geo = STLGeometry(mesh_a) material = Material(color=(0., 0., 1.), diffuse=(0., 0., 0.1), specular=(.1, .1, .1)) obj = Mesh(geo, material) # obj.position.z = 10 self.my_obj = obj # load obj file # loader = OBJLoader() # obj = loader.load(obj_file) # self.monkey = obj.children[0] # scene.add(obj) camera = PerspectiveCamera(15, 1, 1, 1000) self.renderer.render(scene, camera) root.add_widget(self.renderer) Clock.schedule_interval(self._update_obj, 1. / 20) self.renderer.bind(size=self._adjust_aspect) return root
def build(self): layout = FloatLayout() # create renderer self.renderer = Renderer() # create scene scene = Scene() # create default cube for scene cube_geo = my.Msh('sphere.msh',name='zob') cube_mat = Material() self.cube = Mesh(geometry = cube_geo, material = cube_mat) # default pos == (0,0,0) self.cube.pos.z = 0 # create camera for scene self.camera = PerspectiveCamera( fov = 75, #distance from the screen aspect=0, # "screen" ratio near=1, # nearest rendered point far=100 # furthest rendered point ) # start rendering the scene and camera scene.add(self.cube) self.renderer.render(scene,self.camera) # set renderer ratio if its size changes # e. g. when added to parent self.renderer.bind(size=self._adjust_aspect) layout.add_widget(self.renderer) Clock.schedule_interval(self.rotate_cube, .01) return layout
def build(self): layout = FloatLayout() # Create renderer. self.renderer = Renderer() # Create scene. scene = Scene() # Create default cube for scene. cube_geo = BoxGeometry(1, 1, 1) cube_mat = Material() self.cube = Mesh(geometry=cube_geo, material=cube_mat) self.cube.pos.z = -5 # Create camera for scene. self.camera = PerspectiveCamera( fov=75, # distance from the screen aspect=0, # "screen" ratio near=1, #nearest rendered point far=10 # farthest rendered point ) # Start rendering the scene and camera. scene.add(self.cube) self.renderer.render(scene, self.camera) # Set renderer ratio if its size changes. # e.g. when added to parent self.renderer.bind(size=self._adjust_aspect) layout.add_widget(self.renderer) Clock.schedule_interval(self.rotate_cube, 0.01) return layout
def build(self): self.renderer = Renderer(shader_file=shader_file) scene = Scene() camera = PerspectiveCamera(45, 1, 0.1, 2500) self.renderer.set_clear_color((.2, .2, .2, 1.)) self.camera = camera self.renderer.main_light.intensity = 5000 root = ObjectTrackball(camera, 10) geometry = PrismGeometry(radius=1, height=1, segments=64) material = Material(color=(1., 1., 1.), diffuse=(1., 1., 1.), specular=(.35, .35, .35), shininess=200, transparency=0.8) obj = Mesh(geometry, material) scene.add(obj) # create a grid on the xz plane geometry = GridGeometry(size=(30, 30), spacing=1) material = Material(color=(1., 1., 1.), diffuse=(1., 1., 1.), specular=(.35, .35, .35), transparency=.1) lines = Lines(geometry, material) lines.rotation.x = 90 scene.add(lines) self.renderer.render(scene, camera) self.renderer.main_light.intensity = 500 root.add_widget(self.renderer) self.renderer.bind(size=self._adjust_aspect) return root
def build(self): layout = FloatLayout() # create renderer self.renderer = Renderer() # create scene scene = Scene() # create default cube for scene for i in range(1, 6): for j in range(1, 6): cube_geo = BoxGeometry(*[1] * 3) cube_mat = Material(color=(randint(0, 10) * .1, randint(0, 10) * .1, randint(0, 10) * .1)) cube = Mesh(geometry=cube_geo, material=cube_mat) # default pos == (0, 0, 0) cube.pos.y = -0.5 cube.pos.z = -i cube.pos.x = j - 3 self.cubes.append(cube) scene.add(cube) # create camera for scene self.camera = PerspectiveCamera( fov=75, # distance from the screen aspect=0, # "screen" ratio near=1, # nearest rendered point far=20 # farthest rendered point ) # start rendering the scene and camera self.renderer.render(scene, self.camera) # set renderer ratio is its size changes # e.g. when added to parent self.renderer.bind(size=self._adjust_aspect) layout.add_widget(self.renderer) #Clock.schedule_interval(self.move_cubes, 1/60) Window.bind(on_key_down=self.handle_keys) return layout
def build(self): root = FloatLayout() self.renderer = Renderer() self.renderer.set_clear_color((.2, .2, .2, 1.)) scene = Scene() geometry = BoxGeometry(1, 1, 1) material = Material(color=(0., 1., 0.), diffuse=(0., 1., 0.), specular=(.35, .35, .35)) self.cube = Mesh(geometry, material) self.cube.pos.z = -3 camera = PerspectiveCamera(75, 0.3, 1, 1000) scene.add(self.cube) self.renderer.render(scene, camera) root.add_widget(self.renderer) Clock.schedule_interval(self._rotate_cube, 1 / 20) self.renderer.bind(size=self._adjust_aspect) return root
def build(self): self.renderer = Renderer() scene = Scene() camera = PerspectiveCamera(45, 1, 0.1, 2500) self.renderer.set_clear_color((.2, .2, .2, 1.)) self.camera = camera root = ObjectTrackball(camera, 10) # add a cube to the environment as an example # NOTE: the grid will be rendered without transparency if it # is added before the box. # This may be because the shader is not called until a 'triangles' mesh is # rendered? Hence the Fragment Shader has not yet been called? geometry = BoxGeometry(1, 1, 1) material = Material(color=(1., 1., 1.), diffuse=(1., 1., 1.), specular=(.35, .35, .35)) obj = Mesh(geometry, material) scene.add(obj) # create a grid on the xz plane geometry = GridGeometry(size=(30, 30), spacing=1) material = Material(color=(1., 1., 1.), diffuse=(1., 1., 1.), specular=(.35, .35, .35), transparency=.1) lines = Lines(geometry, material) lines.rotation.x = 90 scene.add(lines) self.renderer.render(scene, camera) self.renderer.main_light.intensity = 500 root.add_widget(self.renderer) self.renderer.bind(size=self._adjust_aspect) return root
def build(self): layout = GridLayout(cols=3) # create renderer self.renderer = Renderer(size_hint=(5, 5)) self.renderer.set_clear_color((0.1, 0.1, 0.1, 1)) # rgba # create scene scene = Scene() self.cubes = [] # create cubes for scene # # default pure green cube cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material(color=(0, 0.5, 0) # base color ) self.cubes.append(Mesh(geometry=cube_geo, material=cube_mat)) # default pos == (0, 0, 0) self.cubes[0].pos.z = -5 self.cubes[0].pos.x = 1 self.cubes[0].pos.y = 0.8 self.cubes[0].rotation.x = 45 # black cube, red shadow, half-transparent cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material( transparency=0.5, color=(0, 0, 0), # base color diffuse=(10, 0, 0), # color of "shadows" specular=(0, 0, 0) # mirror-like reflections ) self.cubes.append(Mesh(geometry=cube_geo, material=cube_mat)) # default pos == (0, 0, 0) self.cubes[1].pos.z = -5 self.cubes[1].pos.x = -1 self.cubes[1].pos.y = 0.8 self.cubes[1].rotation.y = 45 # default pure green cube with red reflections cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material( transparency=1, color=(0, 0.5, 0), # base color diffuse=(0, 0, 0), # color of "shadows" specular=(10, 0, 0) # mirror-like reflections ) self.cubes.append(Mesh(geometry=cube_geo, material=cube_mat)) # default pos == (0, 0, 0) self.cubes[2].pos.z = -5 self.cubes[2].pos.x = 1 self.cubes[2].pos.y = -0.8 self.cubes[2].rotation.z = 45 # something.obj from Blender loader = OBJLoader() self.cubes.extend( loader.load(join(FOLDER, 'models', 'something.obj')).children) self.cubes[3].pos.z = -5 self.cubes[3].pos.x = -1 self.cubes[3].pos.y = -0.8 self.cubes[3].rotation.x = 45 self.cubes[3].material.color = (0.1, 0.4, 0.1) self.cubes[3].material.texture_ratio = 0.0 # cube object from Blender loader = OBJLoader() self.main_cube = loader.load(join(FOLDER, 'models', 'cube.obj')) self.main_cube.rotation.x = 45 self.main_cube.rotation.y = 45 self.main_cube.pos.z = -5 self.main_cube.scale = (0.5, 0.5, 0.5) scene.add(self.main_cube) planes = [((0, 0, -10), (0, 0, 0)), ((-10, 0, 0), (0, -90, 0)), ((10, 0, 0), (0, 90, 0)), ((0, 0, 10), (0, 180, 0))] # position and rotation changes for plane in planes: geo = BoxGeometry(5, 5, .1) mat = Material(color=(1, 1, 1)) mesh = Mesh(geometry=geo, material=mat) mesh.pos.x += plane[0][0] mesh.pos.y += plane[0][1] mesh.pos.z += plane[0][2] mesh.rot.x += plane[1][0] mesh.rot.y += plane[1][1] mesh.rot.z += plane[1][2] scene.add(mesh) # create camera for scene self.camera = PerspectiveCamera( fov=75, # distance from the screen aspect=0, # "screen" ratio near=.1, # nearest rendered point far=1000 # farthest rendered point ) # start rendering the scene and camera for cube in self.cubes: scene.add(cube) self.renderer.render(scene, self.camera) # set renderer ratio is its size changes # e.g. when added to parent self.renderer.bind(size=self._adjust_aspect) layout.add_widget(Factory.CamRot()) layout.add_widget(Factory.LightPanel()) layout.add_widget(Factory.CamStrafe()) layout.add_widget(Widget()) layout.add_widget(self.renderer) layout.add_widget(Label(text='+\n\nY\n\n-')) layout.add_widget(Factory.CamNav()) layout.add_widget(Label(text='- X +')) layout.add_widget(Factory.ObjNav()) Clock.schedule_interval(self.rotate_cube, .01) Clock.schedule_interval(self.scale_cube, 1) # keyboard listener Listener() return layout
def construct_manipulator(self): material = Material(color=(0., 0., 1.), diffuse=(1., 1., 0.), specular=(.35, .35, .35)) # axis a # one jaw axis_a_dimensions = JOINT_SIZE_A[0], JOINT_SIZE_A[2], JOINT_SIZE_A[1] axis_a_geometry = create_joint_rectangle(axis_a_dimensions[0], axis_a_dimensions[1], axis_a_dimensions[2]) axis_a_left_mesh = Mesh(axis_a_geometry, material) axis_a_right_mesh = Mesh(axis_a_geometry, material) self.joints.append(axis_a_left_mesh) self.joints.append(axis_a_right_mesh) # axis b wrist axis_b_dimensions = get_joint_hypo_length( JOINT_OFFSET_A_1), JOINT_SIZE_B[1], JOINT_SIZE_B[2] axis_b_geometry = create_joint_rectangle(axis_b_dimensions[0], axis_b_dimensions[1], axis_b_dimensions[2]) material = Material(color=(1., 0., 0.), diffuse=(1., 0., 0.), specular=(.35, .35, .35)) axis_b_mesh = Mesh(axis_b_geometry, material) self.joints.append(axis_b_mesh) axis_b_mesh.add(axis_a_left_mesh) axis_a_left_mesh.pos.x = axis_b_dimensions[0] axis_a_left_mesh.pos.z = axis_b_dimensions[2] / 2 axis_b_mesh.add(axis_a_right_mesh) axis_a_right_mesh.pos.x = axis_b_dimensions[0] axis_a_right_mesh.pos.z = -axis_b_dimensions[2] / 2 # axis c bend axis_c_dimensions = get_joint_hypo_length( JOINT_OFFSET_B), JOINT_SIZE_C[1], JOINT_SIZE_C[2] axis_c_geometry = create_joint_rectangle(axis_c_dimensions[0], axis_c_dimensions[1], axis_c_dimensions[2]) material = Material(color=(1., 1., 0.), diffuse=(1., 1., 0.), specular=(.35, .35, .35)) axis_c_mesh = Mesh(axis_c_geometry, material) self.joints.append(axis_c_mesh) axis_c_mesh.add(axis_b_mesh) axis_b_mesh.pos.x = axis_c_dimensions[0] # axis d bend axis_d_dimensions = get_joint_hypo_length( JOINT_OFFSET_C), JOINT_SIZE_D[1], JOINT_SIZE_D[2] axis_d_geometry = create_joint_rectangle(axis_d_dimensions[0], axis_d_dimensions[1], axis_d_dimensions[2]) material = Material(color=(1., 0., 1.), diffuse=(1., 0., 1.), specular=(.35, .35, .35)) axis_d_mesh = Mesh(axis_d_geometry, material) self.joints.append(axis_d_mesh) axis_d_mesh.add(axis_c_mesh) axis_c_mesh.pos.x = axis_d_dimensions[0] # axis e mesh axis_e_dimensions = get_joint_hypo_length( JOINT_OFFSET_D), JOINT_SIZE_E[1], JOINT_SIZE_E[2] axis_e_geometry = create_joint_rectangle(axis_e_dimensions[0], axis_e_dimensions[1], axis_e_dimensions[2]) material = Material(color=(0., 1., 0.), diffuse=(0., 1., 0.), specular=(.35, .35, .35)) axis_e_mesh = Mesh(axis_e_geometry, material) self.joints.append(axis_e_mesh) axis_e_mesh.add(axis_d_mesh) axis_d_mesh.pos.x = axis_e_dimensions[0] # axis f axis_f_dimensions = get_joint_hypo_length( JOINT_OFFSET_E), JOINT_SIZE_F[1], JOINT_SIZE_F[2] axis_f_geometry = create_joint_rectangle(axis_f_dimensions[0], axis_f_dimensions[1], axis_f_dimensions[2]) material = Material(color=(0., 1., 1.), diffuse=(0., 1., 1.), specular=(.35, .35, .35)) axis_f_mesh = Mesh(axis_f_geometry, material) self.joints.append(axis_f_mesh) axis_f_mesh.add(axis_e_mesh) axis_e_mesh.pos.x = axis_f_dimensions[0] # axis_g axis_g_dimensions = get_joint_hypo_length( JOINT_OFFSET_F), JOINT_SIZE_G[1], JOINT_SIZE_G[2] axis_g_geometry = create_joint_rectangle(axis_g_dimensions[0], axis_g_dimensions[1], axis_g_dimensions[2]) material = Material(color=(1., .4, .1), diffuse=(1., .4, .1), specular=(.35, .35, .35)) axis_g_mesh = Mesh(axis_g_geometry, material) self.joints.append(axis_g_mesh) axis_g_mesh.add(axis_f_mesh) axis_f_mesh.pos.x = axis_g_dimensions[0] axis_f_mesh.rotation.z = -90 # base base_dimensions = 0.05, axis_b_dimensions[1], axis_b_dimensions[2] base_geometry = create_joint_rectangle(base_dimensions[0], base_dimensions[1], base_dimensions[2]) material = Material(color=(0., 1., 1.), diffuse=(0., 1., 1.), specular=(.35, .35, .35)) base_mesh = Mesh(base_geometry, material) self.joints.append(base_mesh) base_mesh.add(axis_g_mesh) base_mesh.rotation.z = 90 axis_g_mesh.pos.x = base_dimensions[0] axis_g_mesh.rotation.z = -90 return base_mesh
def build(self): self.theflag = 0 self.theflag0 = 0 self.distan = 1000 # дистанция до начальной точки (0,0,-50) что бы ничего не было за экраном (надо будет выстваить на изменение) bl = BoxLayout(orientation='vertical', size_hint=(.15, 1), spacing=10, padding=10) # левая панель al = AnchorLayout(anchor_x='left', anchor_y='center') # основная система интерфейса layout = GridLayout(cols=2, spacing=3, size_hint=(1, 1)) #сетка для кнопок поворота matrix = np.load('matrix0.npy', allow_pickle=True) counter = int(int(matrix.size) / 2) x = np.zeros(counter) y = np.zeros(counter) z = np.zeros(counter) soe = np.zeros((counter, counter)) for i in range(2): if (i == 0): for j in range(counter): for k in range(3): a = matrix[i, j] if (k == 0): x[j] = a[k] * 10 elif (k == 1): y[j] = a[k] * 10 else: z[j] = a[k] * 10 else: for j in range(counter): a = matrix[i, j] for k in range(counter): soe[j][k] = a[k] print(x, y, z) print(soe) # кнопка загрузки координат loader = Button(text='Load', on_press=self.load) bl.add_widget(loader) #starter = Button(text='Построить', on_press = self.letstart) #bl.add_widget(starter) bl.add_widget(Widget()) # create renderer self.renderer = Renderer() # create scene scene = Scene() #lines k0 = 0 k1 = 0 lines_list = [] for i in soe: for j in i: if (j == 1): line0_geo = BoxGeometry( 1, int(((y[k0] - y[k1])**2 + (x[k0] - x[k1])**2 + (z[k0] - z[k1])**2)**0.5), 1) #print(int(((abs(x[k0]-x[k1]) + abs(y[k0]-y[k1])+ abs(z[k0]-z[k1]))**0.5)),'length') #print(int(abs(y[k0]-y[k1]) + abs(x[k0]-x[k1])+ abs(z[k0]-z[k1]))) line0_mat = Material() self.line0 = Mesh( geometry=line0_geo, material=line0_mat) # default pos == (0, 0, 0) self.line0.pos.x = int((x[k0] + x[k1]) / 2) self.line0.pos.y = int((y[k0] + y[k1]) / 2) self.line0.pos.z = int((z[k0] + z[k1]) / 2) - self.distan if y[k0] - y[k1] == 0 and x[k0] - x[ k1] == 0 and z[k0] - z[k1] != 0: self.line0.rotation.x = 90 elif y[k0] - y[k1] == 0 and x[k0] - x[k1] != 0 and z[ k0] - z[k1] == 0: self.line0.rotation.z = 90 elif y[k0] - y[k1] != 0 and x[k0] - x[k1] == 0 and z[ k0] - z[k1] == 0: ### fff = 0 elif y[k0] - y[k1] != 0 and x[k0] - x[k1] != 0 and z[ k0] - z[k1] == 0: self.line0.rotation.z = math.atan( (x[k0] - x[k1]) / (y[k0] - y[k1])) / math.pi * 180 elif y[k0] - y[k1] != 0 and x[k0] - x[ k1] == 0 and z[k0] - z[k1] != 0: #self.line0.rotation.x = math.atan((z[k0]-z[k1])/(y[k0]-y[k1]))/math.pi*180 self.line0.rotation.x = math.acos( abs(y[k0] - y[k1]) / ((x[k0] - x[k1])**2 + (y[k0] - y[k1])**2 + (z[k0] - z[k1])**2)**0.5) / math.pi * 180 #print() elif y[k0] - y[k1] == 0 and x[k0] - x[k1] != 0 and z[ k0] - z[k1] != 0: self.line0.rotation.z = math.atan( (x[k0] - x[k1]) / (z[k0] - z[k1])) / math.pi * 180 * -1 self.line0.rotation.x = 90 ### elif y[k0] - y[k1] != 0 and x[k0] - x[k1] != 0 and z[ k0] - z[k1] != 0: if ((x[k0] < x[k1] and y[k0] < y[k1]) or (x[k0] > x[k1] and y[k0] > y[k1])): #self.line0.rotation.z = math.atan((abs(z[k0]-z[k1]))/1.5/(abs(y[k0]-y[k1])))/math.pi*180 self.line0.rotation.z = math.acos( abs(y[k0] - y[k1]) / ((x[k0] - x[k1])**2 + (y[k0] - y[k1])**2 + (0)**2)**0.5) / math.pi * 180 * -1 #проблема else: self.line0.rotation.z = math.acos( abs(y[k0] - y[k1]) / ((x[k0] - x[k1])**2 + (y[k0] - y[k1])**2 + (0)**2)**0.5) / math.pi * 180 #self.line0.rotation.x = math.atan((1.25*abs(x[k0]-x[k1]))/(abs(y[k0]-y[k1])))/math.pi*180*-1 if ((z[k0] < z[k1] and y[k0] < y[k1]) or (z[k0] > z[k1] and y[k0] > y[k1])): self.line0.rotation.x = math.acos( abs(y[k0] - y[k1]) / ((0)**2 + (y[k0] - y[k1])**2 + (z[k0] - z[k1])**2)**0.5) / math.pi * 180 #проблема else: self.line0.rotation.x = math.acos( abs(y[k0] - y[k1]) / ((0)**2 + (y[k0] - y[k1])**2 + (z[k0] - z[k1])**2)**0.5) / math.pi * 180 * -1 #self.line0.rotation.x = math.acos(abs(y[k0]-y[k1])/((0)**2+(y[k0]-y[k1])**2+(z[k0]-z[k1])**2)**0.5)/math.pi*180*-1#there print(self.line0.rotation.z) print(self.line0.rotation.x) lines_list.append(self.line0) k1 += 1 k0 += 1 k1 = 0 line0_geo = BoxGeometry(1, y[1] - y[0], 1) line0_mat = Material() self.line0 = Mesh(geometry=line0_geo, material=line0_mat) # default pos == (0, 0, 0) self.line0.pos.z = int(z[0]) - self.distan #self.line3.rotation.x = 90 #points point_list = [] sumx = 0 sumy = 0 sumz = 0 sumcount = 0 loader = OBJLoader() for i in range(counter): point_geom = SphereGeometry(1.1) point_mat = Material() self.point0 = Mesh(geometry=point_geom, material=point_mat) self.point0.pos.x = int(x[i]) self.point0.pos.y = int(y[i]) self.point0.pos.z = int(z[i]) - self.distan self.point0.scale = (1, 1, 1) point_list.append(self.point0) sumx += self.point0.pos.x sumy += self.point0.pos.y sumz += self.point0.pos.z sumcount += 1 #scene.add(self.point0) point_geom = SphereGeometry() point_mat = Material() self.point1 = Mesh(geometry=point_geom, material=point_mat) self.point1.pos.x = sumx / sumcount self.point1.pos.y = sumy / sumcount self.point1.pos.z = sumz / sumcount self.point1.scale = (1, 1, 1) #scene.add(self.point1) self.camera = PerspectiveCamera( fov=100, # размер окна т.е. чем больше фов тем больше масштаб aspect=0, # "screen" ratio near=1, # рендер от far=10000 # дистанция рендера ) k0 = 0 self.ll = [] for i in soe: for j in i: if (j == 1): self.ll.append(lines_list[k0]) scene.add(lines_list[k0]) k0 += 1 for i in range(counter): scene.add(point_list[i]) pass self.pp = point_list self.renderer.render(scene, self.camera) self.renderer.bind(size=self._adjust_aspect) al.add_widget(self.renderer) bl.add_widget(Factory.Fov()) bl.add_widget(Factory.CamNav()) al.add_widget(bl) return al
def build(self): layout = GridLayout(cols=3) # create renderer self.renderer = Renderer(size_hint=(5, 5)) self.renderer.set_clear_color( (0.1, 0.1, 0.1, 1) ) # rgba # create scene scene = Scene() self.cubes = [] # create cubes for scene # # default pure green cube cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material( color=(0, 0.5, 0) # base color ) self.cubes.append(Mesh( geometry=cube_geo, material=cube_mat )) # default pos == (0, 0, 0) self.cubes[0].pos.z = -5 self.cubes[0].pos.x = 1 self.cubes[0].pos.y = 0.8 self.cubes[0].rotation.x = 45 # black cube, red shadow, half-transparent cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material( transparency=0.5, color=(0, 0, 0), # base color diffuse=(10, 0, 0), # color of "shadows" specular=(0, 0, 0) # mirror-like reflections ) self.cubes.append(Mesh( geometry=cube_geo, material=cube_mat )) # default pos == (0, 0, 0) self.cubes[1].pos.z = -5 self.cubes[1].pos.x = -1 self.cubes[1].pos.y = 0.8 self.cubes[1].rotation.y = 45 # default pure green cube with red reflections cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material( transparency=1, color=(0, 0.5, 0), # base color diffuse=(0, 0, 0), # color of "shadows" specular=(10, 0, 0) # mirror-like reflections ) self.cubes.append(Mesh( geometry=cube_geo, material=cube_mat )) # default pos == (0, 0, 0) self.cubes[2].pos.z = -5 self.cubes[2].pos.x = 1 self.cubes[2].pos.y = -0.8 self.cubes[2].rotation.z = 45 # black cube with red reflections # and half-transparent cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material( transparency=0.5, color=(0, 0, 0), # base color specular=(10, 0, 0) # mirror-like reflections ) self.cubes.append(Mesh( geometry=cube_geo, material=cube_mat )) # default pos == (0, 0, 0) self.cubes[3].pos.z = -5 self.cubes[3].pos.x = -1 self.cubes[3].pos.y = -0.8 self.cubes[3].rotation.x = 45 cube_geo = BoxGeometry(.3, .3, .3) cube_mat = Material( transparency=0.5, color=(0, 0, 0), # base color specular=(10, 0, 0) ) self.main_cube = Mesh( geometry=cube_geo, material=cube_mat ) # default pos == (0, 0, 0) self.main_cube.rotation.x = 45 self.main_cube.rotation.y = 45 self.main_cube.pos.z = -5 scene.add(self.main_cube) plane_geo = BoxGeometry(5, 5, .1) plane_mat = Material( color=(1, 1, 1) # base color ) plane = Mesh( geometry=plane_geo, material=plane_mat ) plane.pos.z = -10 scene.add(plane) # create camera for scene self.camera = PerspectiveCamera( fov=75, # distance from the screen aspect=0, # "screen" ratio near=.1, # nearest rendered point far=1000 # farthest rendered point ) # start rendering the scene and camera for cube in self.cubes: scene.add(cube) self.renderer.render(scene, self.camera) # set renderer ratio is its size changes # e.g. when added to parent self.renderer.bind(size=self._adjust_aspect) layout.add_widget(Factory.CamRot()) layout.add_widget(Widget()) layout.add_widget(Factory.CamStrafe()) layout.add_widget(Widget()) layout.add_widget(self.renderer) layout.add_widget(Label(text='+\n\nY\n\n-')) layout.add_widget(Factory.CamNav()) layout.add_widget(Label(text='- X +')) layout.add_widget(Factory.ObjNav()) Clock.schedule_interval(self.rotate_cube, .01) Clock.schedule_interval(self.scale_cube, 1) # keyboard listener Listener() return layout
def make_3d(self, clock=None): #self.root = FloatLayout() self.renderer = Renderer() self.renderer.set_clear_color((.2, .2, .2, 1.)) self.scene = Scene() #geometry = BoxGeometry(0.5, 0.5, 0.5) geometry = SphereGeometry(0.1) material = Material(color=(0., 0., 1.), diffuse=(1., 1., 0.), specular=(.35, .35, .35)) """ a = 5 liste = [] i = 0 for z in range(-5, -35, -1): for x in range(-5, 5): liste.append(Mesh(geometry, material)) liste[-1].pos.x = x liste[-1].pos.y = -i liste[-1].pos.z = z print(x, -i, z) self.scene.add(liste[-1]) i+=1 """ #!erster test für errecnete Daten liste = [] for z in range(0, int(Global.config["maxy"])): #for z in range(0, 10): #i = 0 test = calculationClass.find_mistakes_along_x_axis(z) #print(test) for x, y, rad in calculationClass.find_mistakes_along_x_axis(z): #for x, y in [[1, 2], [2, 0], [2.314, 5], [3, 0], [3.123, 4]]: #for x, y in [[1, 2], [2, 0], [3, 0]]: #for x in [8.06158101842821, 4.06158101842821, 0.09813725490196079]: #for x in test[:][0]: #for line in test[:10]: #x = line[0] x = float(x) y = float(y) #x = 8.06158101842821 #new_list.append([x, y, z, rad]) rad = 1 #y = 0 z += 5 liste.append(Mesh(geometry, material)) #liste[-1].pos.x = x - 8 liste[-1].pos.x = -z liste[-1].pos.y = y liste[-1].pos.z = x #print(x, y, z) self.scene.add(liste[-1]) #i += 1 self.renderer.render(self.scene, self.camera) self.renderer.bind(size=self._adjust_aspect) self.layout.add_widget(self.renderer) print(liste[0]) print(liste[0].pos) #self.look_at = liste[0].pos #self.look_at.x = liste[0][0] #self.look_at.y = liste[0][1] #self.look_at.z = liste[0][2] #self.camera.look_at(self.look_at) #test = (liste[0][0], liste[0][1], liste[0][2]) #a = tuple(liste[0].pos) #print(a) #self.camera.look_at(a) #self.look_at.x = liste[0].pos.x #self.look_at.y = liste[0].pos.y #self.look_at.z = liste[0].pos.z self.look_at = Vector3(0, 0, -1) #self.camera.look_at(self.look_at) #self.add_widget(self.root) print("here")
def convert_to_mesh(self, vertex_format=None): """Converts data gotten from the .obj definition file and create Kivy3 Mesh object which may be used for drawing object in the scene """ geometry = Geometry() material = Material() mtl_dirname = os.path.abspath(os.path.dirname(self.loader.mtl_source)) v_idx = 0 # create geometry for mesh for f in self.faces: verts = f[0] norms = f[1] tcs = f[2] face3 = Face3(0, 0, 0) for i, e in enumerate(['a', 'b', 'c']): #get normal components n = (0.0, 0.0, 0.0) if norms[i] != -1: n = self.loader.normals[norms[i] - 1] face3.vertex_normals.append(n) #get vertex components v = self.loader.vertices[verts[i] - 1] geometry.vertices.append(v) setattr(face3, e, v_idx) v_idx += 1 #get texture coordinate components t = (0.0, 0.0) if tcs[i] != -1: t = self.loader.texcoords[tcs[i] - 1] tc = Vector2(t[0], 1. - t[1]) geometry.face_vertex_uvs[0].append(tc) geometry.faces.append(face3) # apply material for object if self.mtl_name in self.loader.mtl_contents: raw_material = self.loader.mtl_contents[self.mtl_name] for k, v in raw_material.iteritems(): _k = self._mtl_map.get(k, None) if k in [ "map_Kd", ]: map_path = os.path.join(mtl_dirname, v[0]) tex = Image(map_path).texture material.map = tex continue if _k: if len(v) == 1: v = float(v[0]) if k == 'Tr': v = 1. - v setattr(material, _k, v) else: v = map(lambda x: float(x), v) setattr(material, _k, v) mesh = Mesh(geometry, material) return mesh
def convert_to_mesh( self, vertex_format=None ): # Ripped from kivy3/loaders/objloader.py and edited by GJ """Converts data gotten from the ._obj definition file and create Kivy3 Mesh object which may be used for drawing object in the scene """ geometry = Geometry() material = Material() mtl_dirname = abspath( dirname(self.loader.mtl_source )) # We don't need this as we arnt loading any images # but just in case we keep it v_idx = 0 # create geometry for mesh for f in self.faces: verts = f[0] norms = f[1] tcs = f[2] face3 = Face3(0, 0, 0) for i, e in enumerate(['a', 'b', 'c']): # get normal components n = (0.0, 0.0, 0.0) if norms[i] != -1: n = self.loader.normals[norms[i] - 1] face3.vertex_normals.append(n) # get vertex components v = self.loader.vertices[verts[i] - 1] geometry.vertices.append(v) setattr(face3, e, v_idx) v_idx += 1 # get texture coordinate components t = (0.0, 0.0) if tcs[i] != -1: t = self.loader.texcoords[tcs[i] - 1] tc = Vector2(t[0], 1. - t[1]) geometry.face_vertex_uvs[0].append(tc) geometry.faces.append(face3) # apply material for object if self.mtl_name in self.loader.mtl_contents: raw_material = self.loader.mtl_contents[self.mtl_name] # shader ignores values zeros = [ '0', '0.0', '0.00', '0.000', '0.0000', '0.00000', '0.000000' ] for k, v in raw_material.items(): _k = self._mtl_map.get(k, None) if k in [ "map_Kd", ]: self.log_warning( "the tag map_kd should not be used as a material, use map_id and give the texture" " type (ini section and option)") map_path = join(mtl_dirname, v[0]) if not exists(map_path): msg = u'Texture not found <{}>' self.log_warning(msg.format(map_path)) continue tex = Image(map_path).texture material.map = tex continue if k in [ "map_id", ]: tex = self.textures.get("Materials", str(v[0])) material.map = tex if _k: if len(v) == 1: v[0] = '0.000001' if v[0] in zeros else v[0] v = float(v[0]) if k == 'Tr': v = 1. - v setattr(material, _k, v) else: v = list(map(lambda x: float(x), v)) setattr(material, _k, v) if not material.map: self.log_warning( "No material given or used wrong name -", self.mtl_name, "(if nothing here then you " "provided no mtl file)") material.map = Image(objLoader_folder + '/empty.png').texture material.texture_ratio = 0.0 mesh = Mesh(geometry, material) return mesh
def build(self): self.renderer = Renderer(shader_file=shader_file) scene = Scene() camera = PerspectiveCamera(45, 1, 0.1, 2500) self.renderer.set_clear_color(clear_color) self.camera = camera root = ObjectTrackball(camera, 10, self.renderer) id_color = (0, 0, 0x7F) geometry = BoxGeometry(1, 1, 1) material = Material(color=(1., 1., 1.), diffuse=(1., 1., 1.), specular=(.35, .35, .35), id_color=id_color, shininess=1.) obj = Mesh(geometry, material) scene.add(obj) root.object_list.append({'id': id_color, 'obj': obj}) id_color = (0, 0x7F, 0) geometry = BoxGeometry(1, 1, 1) material = Material(color=(0., 0., 1.), diffuse=(0., 0., 1.), specular=(.35, .35, .35), id_color=id_color, shininess=1.) obj = Mesh(geometry, material) obj.position.x = 2 scene.add(obj) root.object_list.append({'id': id_color, 'obj': obj}) # create a grid on the xz plane geometry = GridGeometry(size=(30, 30), spacing=1) material = Material(color=(1., 1., 1.), diffuse=(1., 1., 1.), specular=(.35, .35, .35), transparency=.5) lines = Lines(geometry, material) lines.rotation.x = 90 scene.add(lines) geometry = Geometry() geometry.vertices = [[0.0, 0.0, 0.0], [3.0, 0.0, 0.0]] geometry.lines = [Line2(a=0, b=1)] material = Material(color=(1., 0., 0.), diffuse=(1., 0., 0.), specular=(.35, .35, .35)) lines = Lines(geometry, material) lines.position.y = -0.01 scene.add(lines) geometry = Geometry() geometry.vertices = [[0.0, 0.0, 0.0], [0.0, 3.0, 0.0]] geometry.lines = [Line2(a=0, b=1)] material = Material(color=(0., 1., 0.), diffuse=(0., 1., 0.), specular=(1., 1.0, 1.0)) lines = Lines(geometry, material) scene.add(lines) geometry = Geometry() geometry.vertices = [[0.0, 0.0, 0.0], [0.0, 0.0, 3.0]] geometry.lines = [Line2(a=0, b=1)] material = Material(color=(0., 0., 1.), diffuse=(0., 0., 1.), specular=(.35, .35, .35)) lines = Lines(geometry, material) lines.position.y = -0.01 scene.add(lines) self.renderer.render(scene, camera) self.renderer.main_light.intensity = 1000 self.renderer.main_light.pos = (10, 10, -10) root.add_widget(self.renderer) self.renderer.bind(size=self._adjust_aspect) return root
def convert_to_mesh(self, vertex_format=None): """Converts data gotten from the .obj definition file and create Kivy3 Mesh object which may be used for drawing object in the scene """ geometry = Geometry() material = Material() mtl_dirname = abspath(dirname(self.loader.mtl_source)) v_idx = 0 # create geometry for mesh for f in self.faces: verts = f[0] norms = f[1] tcs = f[2] face3 = Face3(0, 0, 0) for i, e in enumerate(['a', 'b', 'c']): # get normal components n = (0.0, 0.0, 0.0) if norms[i] != -1: n = self.loader.normals[norms[i] - 1] face3.vertex_normals.append(n) # get vertex components v = self.loader.vertices[verts[i] - 1] geometry.vertices.append(v) setattr(face3, e, v_idx) v_idx += 1 # get texture coordinate components t = (0.0, 0.0) if tcs[i] != -1: t = self.loader.texcoords[tcs[i] - 1] tc = Vector2(t[0], 1. - t[1]) geometry.face_vertex_uvs[0].append(tc) geometry.faces.append(face3) # apply material for object if self.mtl_name in self.loader.mtl_contents: raw_material = self.loader.mtl_contents[self.mtl_name] # shader ignores values zeros = ['0', '0.0', '0.00', '0.000', '0.0000', '0.00000', '0.000000'] for k, v in raw_material.items(): _k = self._mtl_map.get(k, None) # TODO: also handle map_Ka and map_Ks if k in ["map_Kd", ]: # TODO: map file path may contains spaces. # current implementation fails. map_path = join(mtl_dirname, v[0]) if not exists(map_path): msg = u'WaveObject: Texture not found <{}>' Logger.warning(msg.format(map_path)) continue tex = Image(map_path).texture material.map = tex continue if _k: if len(v) == 1: v[0] = '0.000001' if v[0] in zeros else v[0] v = float(v[0]) if k == 'Tr': v = 1. - v setattr(material, _k, v) else: v = list(map(lambda x: float(x), v)) setattr(material, _k, v) if not material.map: material.map = Image(folder + '/empty.png').texture material.texture_ratio = 0.0 mesh = Mesh(geometry, material) return mesh