def sphere_collision_tests(x, radius, grid): bmin = vectorops.sub(x, [radius] * len(x)) bmax = vectorops.add(x, [radius] * len(x)) imin = [max(0, int(v)) for v in bmin] imax = [min(int(v), b - 1) for v, b in zip(bmax, workspace_size)] for i in range(imin[0], imax[0]): for j in range(imin[1], imax[1]): for k in range(imin[2], imax[2]): if vectorops.distanceSquared((i, j, k), x) < radius**2: yield (i, j, k) return
def get_ik_solutions(self,goals,limbs,initialConfig=None,maxResults=10,maxIters=100,tol=1e-3,validity_checker=None): """Given a list of goals and their associated limbs, returns a list of (q,index) pairs, where q is an IK solution for goals[index]. The results are sorted by distance from initialConfig. Arguments: - goals: a list of IKObjectives - limbs: a list of 'left'/'right', one for each goal, corresponding to the limb that the goal is defined on - initialConfig: optionally, a configuration for the IK seed - maxResults: the maximum number of IK results to return - maxIters: the maximum number of random samples to draw - tol: the ik solving tolerance - validity_checker: optionally, a special collision checker f(limb) that returns True if the robot's current limb configuration is valid. If None, the standard planner collision checker is used. Returns: a list [(solution1,index1),...,(solutionn,indexn)] of up to maxResults collision-free solutions. """ if initialConfig == None: initialConfig = self.controller.getCommandedConfig() if validity_checker == None: validity_checker = self.planner.check_collision_free numTrials = [0]*len(goals) ikSolutions = [] for i in range(maxIters): index = random.randint(0,len(goals)-1) goal = goals[index] limb = limbs[index] numTrials[index] += 1 if numTrials[index] == 1: self.robot.setConfig(initialConfig) else: self.randomize_limb_position(limb,center=initialConfig,range=0.05*(numTrials[index]-1)) if ik.solve(goal,tol=tol): if validity_checker(limb): ikSolutions.append((self.robot.getConfig(),index)) if len(ikSolutions) >= maxResults: break else: print "IK solution for goal",index,"was in collision, trying again" if len(ikSolutions)==0: print "No collision free IK solution" return [] sortedSolutions = sorted([(vectorops.distanceSquared(solution[0],initialConfig),solution) for solution in ikSolutions]) return [s[1] for s in sortedSolutions]
def get_ik_solutions(self,goal,maxResults=10,maxIters=1000,tol=1e-3,printer=True): initialConfig = self.controller.getCommandedConfig() validity_checker = self.planner.check_collision_free numTrials = 0 ikSolutions = [] numSolutions = 0 numColFreeSolutions = 0 for i in range(1): numTrials += 1 # if first time trying the ik goal, initialize with current config if numTrials == 1: self.robot.setConfig(initialConfig) # else, initialize with a random q, incrementally perturbing more from inital config else: self.robot.setConfig(self.randomPose()) #print self.robot.getConfig() if ik.solve(goal,tol=tol): numSolutions += 1 if validity_checker(): numColFreeSolutions += 1 ikSolutions.append(self.robot.getConfig()) if len(ikSolutions) >= maxResults: break if printer: print "< IK Summary >", print "Attempted:", numTrials, "/", maxIters, "; Result:", numColFreeSolutions, "/", numSolutions, "col. free. solutions" # sort solutions by distance to initial config sortedSolutions = [] for solution in ikSolutions: dist = vectorops.distanceSquared(solution,initialConfig) sortedSolutions.append( (dist, solution) ) sortedSolutions = sorted(sortedSolutions, key=itemgetter(0)) # s[0] contains the distance-sqaured values # s[1] contains the ikSolution # to return a sorted list... # return [s[1] for s in sortedSolutions] # to return the shorted-distance solution... return sortedSolutions[0][1]
def calibrate_xform_camera(camera_link_transforms, marker_link_transforms, marker_observations, marker_ids, observation_relative_errors=None, camera_initial_guess=None, marker_initial_guess=None, regularizationFactor=0, maxIters=100, tolerance=1e-7): """Single camera calibration function for a camera and markers on some set of rigid bodies. Given body transforms and a list of estimated calibration marker observations in the camera frame, estimates both the camera transform relative to the camera link as well as the marker transforms relative to their links. M: is the set of m markers. By default there is at most one marker per link. Markers can either be point markers (e.g., a mocap ball), or transform markers (e.g., an AR tag or checkerboard pattern). O: is the set of n observations, consisting of a reading (Tc_i,Tm_i,o_i,l_i) where Tc_i is the camera link's transform, Tm_i is the marker link's transform, o_i is the reading which consists of either a point or transform estimate in the camera frame, and l_i is the ID of the marker (by default, just its link) Output: a tuple (err,Tc,marker_dict) where err is the norm of the reconstruction residual, Tc is the estimated camera transform relative to the camera's link, and marker_dict is a dict mapping each marker id to its estimated position or transform on the marker's link. Arguments: - camera_link: an integer index or a RobotModelLink instance on which the camera lies. - calibration_configs: a list of the RobotModel configurations q_1,...,q_n that generated the marker_observations list. - marker_observations: a list of estimated positions or transformations of calibration markers o_1,...,o_n, given in the camera's reference frame (z forward, x right, y down). If o_i is a 3-vector, the marker is considered to be a point marker. If a se3 element (R,t) is given, the marker is considered to be a transform marker. You may not mix point and transform observations for a single marker ID. - marker_ids: a list of marker ID #'s l_1,...,l_n corresponding to each observation, e.g., the link index on which each marker lies. - observation_relative_errors: if you have an idea of the magnitude of each observation error, it can be placed into this list. Must be a list of n floats, 3-lists (point markers), or 6-lists (transform markers). By default, errors will be set proportionally to the observed distance between the camera and marker. - camera_initial_guess: if not None, an initial guess for the camera transform - marker_initial_guess: if not None, a dictionary containing initial guesses for the marker transforms - regularizationFactor: if nonzero, the optimization penalizes deviation of the estimated camera transform and marker transforms from zero proportionally to this factor. - maxIters: maximum number of iterations for optimization. - tolerance: optimization convergence tolerance. Stops when the change of estimates falls below this threshold """ if len(camera_link_transforms) != len(marker_ids): raise ValueError("Must provide the same number of marker IDs as camera transforms") if len(marker_link_transforms) != len(marker_ids): raise ValueError("Must provide the same number of marker IDs as marker transforms") if len(marker_observations) != len(marker_ids): raise ValueError("Must provide the same number of marker observations as marker transforms") #get all unique marker ids marker_id_list = list(set(marker_ids)) #detect marker types marker_types = dict((v,None) for v in marker_id_list) for i,(obs,id) in enumerate(zip(marker_observations,marker_ids)): if len(obs)==3: if marker_types[id] == 't': raise ValueError("Provided both point and transform observations for observation #%d, id %s\n"%(i,str(id))) marker_types[id] = 'p' elif len(obs)==2 and len(obs[0])==9 and len(obs[1])==3: if marker_types[id] == 'p': raise ValueError("Provided both point and transform observations for observation #%d, id %s\n"%(i,str(id))) marker_types[id] = 't' else: raise ValueError("Invalid observation for observation #%d, id %s\n"%(i,str(id))) n = len(marker_observations) m = len(marker_id_list) #get all the observation weights observation_weights = [] if observation_relative_errors is None: #default weights: proportional to distance for obs in marker_observations: if len(obs) == 3: observation_weights.append(1.0/vectorops.norm(obs)) else: observation_weights.append(1.0/vectorops.norm(obs[1])) observation_weights = [1.0]*len(observation_weights) else: if len(observation_relative_errors) != n: raise ValueError("Invalid length of observation errors") for err in observation_relative_errors: if hasattr(err,'__iter__'): observation_weights.append([1.0/v for v in err]) else: observation_weights.append(1.0/err) #initial guesses if camera_initial_guess == None: camera_initial_guess = se3.identity() if any(v == 't' for v in marker_types.itervalues()): #estimate camera rotation from point estimates because rotations are more prone to initialization failures point_observations = [] marker_point_rel = [] for i,obs in enumerate(marker_observations): if len(obs)==2: point_observations.append(obs[1]) else: point_observations.append(obs) marker_point_rel.append(se3.mul(se3.inv(camera_link_transforms[i]),marker_link_transforms[i])[1]) camera_initial_guess = (point_fit_rotation_3d(point_observations,marker_point_rel),[0.0]*3) print "Estimated camera rotation from points:",camera_initial_guess if marker_initial_guess == None: marker_initial_guess = dict((l,(se3.identity() if marker_types[l]=='t' else [0.0]*3)) for l in marker_id_list) else: marker_initial_guess = marker_initial_guess.copy() for l in marker_id_list: if l not in marker_initial_guess: marker_initial_guess[l] = (se3.identity() if marker_types[l]=='t' else [0.0]*3) camera_transform = camera_initial_guess marker_transforms = marker_initial_guess.copy() if DO_VISUALIZATION: rgroup = coordinates.addGroup("calibration") rgroup.addFrame("camera link",worldCoordinates=camera_link_transforms[-1]) rgroup.addFrame("marker link",worldCoordinates=marker_link_transforms[-1]) rgroup.addFrame("camera estimate",parent="camera link",relativeCoordinates=camera_transform) rgroup.addFrame("marker estimate",parent="marker link",relativeCoordinates=marker_transforms.values()[0]) for i,obs in enumerate(marker_observations): rgroup.addFrame("obs"+str(i)+" estimate",parent="camera estimate",relativeCoordinates=obs) vis.add("coordinates",rgroup) vis.dialog() point_observations_only = all(marker_types[marker] == 'p' for marker in marker_id_list) xform_observations_only = all(marker_types[marker] == 't' for marker in marker_id_list) if not point_observations_only and not xform_observations_only: raise NotImplementedError("Can't calibrate camera from mixed point/transform markers yet") for iters in range(maxIters): #attempt to minimize the error on the following over all observations i #camera_link_transform(q_i)*camera_transform*observation_i = marker_link_transform(l_i,q_i)*marker_transform(l_i) #first, we'll assume the camera transform is fixed and then optimize the marker transforms. #then, we'll assume the marker transforms are fixed and then optimize the camera transform. #finally we'll check the error to detect convergence #1. Estimate marker transforms from current camera transform new_marker_transforms = dict((l,(TransformStats(zero=marker_initial_guess[l],prior=regularizationFactor) if marker_types[l]=='t' else VectorStats(value,zero=[0.0]*3,prior=RegularizationFactor))) for l in marker_id_list) for i in xrange(n): marker = marker_ids[i] Tclink = camera_link_transforms[i] Tmlink = marker_link_transforms[i] obs = marker_observations[i] Trel = se3.mul(se3.inv(Tmlink),se3.mul(Tclink,camera_transform)) if marker_types[marker] == 't': estimate = se3.mul(Trel,obs) else: estimate = se3.apply(Trel,obs) new_marker_transforms[marker].add(estimate,observation_weights[i]) print "ITERATION",iters #print " ESTIMATED MARKER TRANSFORMS:",dict((k,v.average) for (k,v) in new_marker_transforms.iteritems()) #2. Estimate camera transform from current marker transforms new_camera_transform = TransformStats(zero=camera_initial_guess,prior=regularizationFactor) if point_observations_only: #TODO: weighted point fitting relative_points = [] for i in xrange(n): marker = marker_ids[i] Tclink = camera_link_transforms[i] Tmlink = marker_link_transforms[i] obs = marker_observations[i] pRel = se3.apply(se3.inv(Tclink),se3.apply(Tmlink,new_marker_transforms[marker].average)) relative_points.append(pRel) new_camera_transform.add(point_fit_xform_3d(marker_observations,relative_points),sum(observation_weights)) else: for i in xrange(n): marker = marker_ids[i] Tclink = camera_link_transforms[i] Tmlink = marker_link_transforms[i] obs = marker_observations[i] Trel = se3.mul(se3.inv(Tclink),se3.mul(Tmlink,new_marker_transforms[marker].average)) estimate = se3.mul(Trel,se3.inv(obs)) new_camera_transform.add(estimate,observation_weights[i]) #print " ESTIMATED CAMERA TRANSFORMS:",new_camera_transform.average #3. compute difference between last and current estimates diff = 0.0 diff += vectorops.normSquared(se3.error(camera_transform,new_camera_transform.average)) for marker in marker_id_list: if marker_types[marker]=='t': diff += vectorops.normSquared(se3.error(marker_transforms[marker],new_marker_transforms[marker].average)) else: diff += vectorops.distanceSquared(marker_transforms[marker],new_marker_transforms[marker].average) camera_transform = new_camera_transform.average for marker in marker_id_list: marker_transforms[marker] = new_marker_transforms[marker].average if math.sqrt(diff) < tolerance: #converged! print "Converged with diff %g on iteration %d"%(math.sqrt(diff),iters) break print " ESTIMATE CHANGE:",math.sqrt(diff) error = 0.0 for i in xrange(n): marker = marker_ids[i] Tclink = camera_link_transforms[i] Tmlink = marker_link_transforms[i] obs = marker_observations[i] Tc = se3.mul(Tclink,camera_transform) if marker_types[marker] == 't': Tm = se3.mul(Tmlink,marker_transforms[marker]) error += vectorops.normSquared(se3.error(se3.mul(Tc,obs),Tm)) else: Tm = se3.apply(Tmlink,marker_transforms[marker]) error += vectorops.distanceSquared(se3.apply(Tc,obs),Tm) print " OBSERVATION ERROR:",math.sqrt(error) #raw_input() if DO_VISUALIZATION: rgroup.setFrameCoordinates("camera estimate",camera_transform) rgroup.setFrameCoordinates("marker estimate",marker_transforms.values()[0]) for i,obs in enumerate(marker_observations): rgroup.setFrameCoordinates("obs"+str(i)+" estimate",obs) vis.add("coordinates",rgroup) vis.dialog() if math.sqrt(diff) >= tolerance: print "Max iters reached" error = 0.0 for i in xrange(n): marker = marker_ids[i] Tclink = camera_link_transforms[i] Tmlink = marker_link_transforms[i] obs = marker_observations[i] Tc = se3.mul(Tclink,camera_transform) if marker_types[marker] == 't': Tm = se3.mul(Tmlink,marker_transforms[marker]) error += vectorops.normSquared(se3.error(se3.mul(Tc,obs),Tm)) else: Tm = se3.apply(Tmlink,marker_transforms[marker]) error += vectorops.distanceSquared(se3.apply(Tc,obs),Tm) return (math.sqrt(error),camera_transform,marker_transforms)
def calibrate_xform_camera(camera_link_transforms, marker_link_transforms, marker_observations, marker_ids, observation_relative_errors=None, camera_initial_guess=None, marker_initial_guess=None, regularizationFactor=0, maxIters=100, tolerance=1e-7): """Single camera calibration function for a camera and markers on some set of rigid bodies. Given body transforms and a list of estimated calibration marker observations in the camera frame, estimates both the camera transform relative to the camera link as well as the marker transforms relative to their links. M: is the set of m markers. By default there is at most one marker per link. Markers can either be point markers (e.g., a mocap ball), or transform markers (e.g., an AR tag or checkerboard pattern). O: is the set of n observations, consisting of a reading (Tc_i,Tm_i,o_i,l_i) where Tc_i is the camera link's transform, Tm_i is the marker link's transform, o_i is the reading which consists of either a point or transform estimate in the camera frame, and l_i is the ID of the marker (by default, just its link) Output: a tuple (err,Tc,marker_dict) where err is the norm of the reconstruction residual, Tc is the estimated camera transform relative to the camera's link, and marker_dict is a dict mapping each marker id to its estimated position or transform on the marker's link. Arguments: - camera_link: an integer index or a RobotModelLink instance on which the camera lies. - calibration_configs: a list of the RobotModel configurations q_1,...,q_n that generated the marker_observations list. - marker_observations: a list of estimated positions or transformations of calibration markers o_1,...,o_n, given in the camera's reference frame (z forward, x right, y down). If o_i is a 3-vector, the marker is considered to be a point marker. If a se3 element (R,t) is given, the marker is considered to be a transform marker. You may not mix point and transform observations for a single marker ID. - marker_ids: a list of marker ID #'s l_1,...,l_n corresponding to each observation, e.g., the link index on which each marker lies. - observation_relative_errors: if you have an idea of the magnitude of each observation error, it can be placed into this list. Must be a list of n floats, 3-lists (point markers), or 6-lists (transform markers). By default, errors will be set proportionally to the observed distance between the camera and marker. - camera_initial_guess: if not None, an initial guess for the camera transform - marker_initial_guess: if not None, a dictionary containing initial guesses for the marker transforms - regularizationFactor: if nonzero, the optimization penalizes deviation of the estimated camera transform and marker transforms from zero proportionally to this factor. - maxIters: maximum number of iterations for optimization. - tolerance: optimization convergence tolerance. Stops when the change of estimates falls below this threshold """ if len(camera_link_transforms) != len(marker_ids): raise ValueError("Must provide the same number of marker IDs as camera transforms") if len(marker_link_transforms) != len(marker_ids): raise ValueError("Must provide the same number of marker IDs as marker transforms") if len(marker_observations) != len(marker_ids): raise ValueError("Must provide the same number of marker observations as marker transforms") #get all unique marker ids marker_id_list = list(set(marker_ids)) #detect marker types marker_types = dict((v,None) for v in marker_id_list) for i,(obs,id) in enumerate(zip(marker_observations,marker_ids)): if len(obs)==3: if marker_types[id] == 't': raise ValueError("Provided both point and transform observations for observation #%d, id %s\n"%(i,str(id))) marker_types[id] = 'p' elif len(obs)==2 and len(obs[0])==9 and len(obs[1])==3: if marker_types[id] == 'p': raise ValueError("Provided both point and transform observations for observation #%d, id %s\n"%(i,str(id))) marker_types[id] = 't' else: raise ValueError("Invalid observation for observation #%d, id %s\n"%(i,str(id))) n = len(marker_observations) m = len(marker_id_list) #get all the observation weights observation_weights = [] if observation_relative_errors is None: #default weights: proportional to distance for obs in marker_observations: if len(obs) == 3: observation_weights.append(1.0/vectorops.norm(obs)) else: observation_weights.append(1.0/vectorops.norm(obs[1])) observation_weights = [1.0]*len(observation_weights) else: if len(observation_relative_errors) != n: raise ValueError("Invalid length of observation errors") for err in observation_relative_errors: if hasattr(err,'__iter__'): observation_weights.append([1.0/v for v in err]) else: observation_weights.append(1.0/err) #initial guesses if camera_initial_guess == None: camera_initial_guess = se3.identity() if any(v == 't' for v in marker_types.itervalues()): #estimate camera rotation from point estimates because rotations are more prone to initialization failures point_observations = [] marker_point_rel = [] for i,obs in enumerate(marker_observations): if len(obs)==2: point_observations.append(obs[1]) else: point_observations.append(obs) marker_point_rel.append(se3.mul(se3.inv(camera_link_transforms[i]),marker_link_transforms[i])[1]) camera_initial_guess = (point_fit_rotation_3d(point_observations,marker_point_rel),[0.0]*3) print "Estimated camera rotation from points:",camera_initial_guess if marker_initial_guess == None: marker_initial_guess = dict((l,(se3.identity() if marker_types[l]=='t' else [0.0]*3)) for l in marker_id_list) else: marker_initial_guess = marker_initial_guess.copy() for l in marker_id_list: if l not in marker_initial_guess: marker_initial_guess[l] = (se3.identity() if marker_types[l]=='t' else [0.0]*3) camera_transform = camera_initial_guess marker_transforms = marker_initial_guess.copy() if DO_VISUALIZATION: rgroup = coordinates.addGroup("calibration") rgroup.addFrame("camera link",worldCoordinates=camera_link_transforms[-1]) rgroup.addFrame("marker link",worldCoordinates=marker_link_transforms[-1]) rgroup.addFrame("camera estimate",parent="camera link",relativeCoordinates=camera_transform) rgroup.addFrame("marker estimate",parent="marker link",relativeCoordinates=marker_transforms.values()[0]) for i,obs in enumerate(marker_observations): rgroup.addFrame("obs"+str(i)+" estimate",parent="camera estimate",relativeCoordinates=obs) visualization.add("coordinates",rgroup) visualization.dialog() point_observations_only = all(marker_types[marker] == 'p' for marker in marker_id_list) xform_observations_only = all(marker_types[marker] == 't' for marker in marker_id_list) if not point_observations_only and not xform_observations_only: raise NotImplementedError("Can't calibrate camera from mixed point/transform markers yet") for iters in range(maxIters): #attempt to minimize the error on the following over all observations i #camera_link_transform(q_i)*camera_transform*observation_i = marker_link_transform(l_i,q_i)*marker_transform(l_i) #first, we'll assume the camera transform is fixed and then optimize the marker transforms. #then, we'll assume the marker transforms are fixed and then optimize the camera transform. #finally we'll check the error to detect convergence #1. Estimate marker transforms from current camera transform new_marker_transforms = dict((l,(TransformStats(zero=marker_initial_guess[l],prior=regularizationFactor) if marker_types[l]=='t' else VectorStats(value,zero=[0.0]*3,prior=RegularizationFactor))) for l in marker_id_list) for i in xrange(n): marker = marker_ids[i] Tclink = camera_link_transforms[i] Tmlink = marker_link_transforms[i] obs = marker_observations[i] Trel = se3.mul(se3.inv(Tmlink),se3.mul(Tclink,camera_transform)) if marker_types[marker] == 't': estimate = se3.mul(Trel,obs) else: estimate = se3.apply(Trel,obs) new_marker_transforms[marker].add(estimate,observation_weights[i]) print "ITERATION",iters #print " ESTIMATED MARKER TRANSFORMS:",dict((k,v.average) for (k,v) in new_marker_transforms.iteritems()) #2. Estimate camera transform from current marker transforms new_camera_transform = TransformStats(zero=camera_initial_guess,prior=regularizationFactor) if point_observations_only: #TODO: weighted point fitting relative_points = [] for i in xrange(n): marker = marker_ids[i] Tclink = camera_link_transforms[i] Tmlink = marker_link_transforms[i] obs = marker_observations[i] pRel = se3.apply(se3.inv(Tclink),se3.apply(Tmlink,new_marker_transforms[marker].average)) relative_points.append(pRel) new_camera_transform.add(point_fit_xform_3d(marker_observations,relative_points),sum(observation_weights)) else: for i in xrange(n): marker = marker_ids[i] Tclink = camera_link_transforms[i] Tmlink = marker_link_transforms[i] obs = marker_observations[i] Trel = se3.mul(se3.inv(Tclink),se3.mul(Tmlink,new_marker_transforms[marker].average)) estimate = se3.mul(Trel,se3.inv(obs)) new_camera_transform.add(estimate,observation_weights[i]) #print " ESTIMATED CAMERA TRANSFORMS:",new_camera_transform.average #3. compute difference between last and current estimates diff = 0.0 diff += vectorops.normSquared(se3.error(camera_transform,new_camera_transform.average)) for marker in marker_id_list: if marker_types[marker]=='t': diff += vectorops.normSquared(se3.error(marker_transforms[marker],new_marker_transforms[marker].average)) else: diff += vectorops.distanceSquared(marker_transforms[marker],new_marker_transforms[marker].average) camera_transform = new_camera_transform.average for marker in marker_id_list: marker_transforms[marker] = new_marker_transforms[marker].average if math.sqrt(diff) < tolerance: #converged! print "Converged with diff %g on iteration %d"%(math.sqrt(diff),iters) break print " ESTIMATE CHANGE:",math.sqrt(diff) error = 0.0 for i in xrange(n): marker = marker_ids[i] Tclink = camera_link_transforms[i] Tmlink = marker_link_transforms[i] obs = marker_observations[i] Tc = se3.mul(Tclink,camera_transform) if marker_types[marker] == 't': Tm = se3.mul(Tmlink,marker_transforms[marker]) error += vectorops.normSquared(se3.error(se3.mul(Tc,obs),Tm)) else: Tm = se3.apply(Tmlink,marker_transforms[marker]) error += vectorops.distanceSquared(se3.apply(Tc,obs),Tm) print " OBSERVATION ERROR:",math.sqrt(error) #raw_input() if DO_VISUALIZATION: rgroup.setFrameCoordinates("camera estimate",camera_transform) rgroup.setFrameCoordinates("marker estimate",marker_transforms.values()[0]) for i,obs in enumerate(marker_observations): rgroup.setFrameCoordinates("obs"+str(i)+" estimate",obs) visualization.add("coordinates",rgroup) visualization.dialog() if math.sqrt(diff) >= tolerance: print "Max iters reached" error = 0.0 for i in xrange(n): marker = marker_ids[i] Tclink = camera_link_transforms[i] Tmlink = marker_link_transforms[i] obs = marker_observations[i] Tc = se3.mul(Tclink,camera_transform) if marker_types[marker] == 't': Tm = se3.mul(Tmlink,marker_transforms[marker]) error += vectorops.normSquared(se3.error(se3.mul(Tc,obs),Tm)) else: Tm = se3.apply(Tmlink,marker_transforms[marker]) error += vectorops.distanceSquared(se3.apply(Tc,obs),Tm) return (math.sqrt(error),camera_transform,marker_transforms)
def mahalanobis_distance2(u,v,A=None): if A is None: return vectorops.distanceSquared(u,v) else: z = np.array(vectorops.sub(u,v)) return np.dot(z.T,np.dot(A,z))