Exemple #1
0
    def configure(self):

        # use this to count through the single events
        self.event_idx = 0

        # get the original file to compare to
        filename = data_path(
            "offline/mcv6.0.gsg_muon_highE-CC_50-500GeV.km3sim.jterbr00008357.jorcarec.aanet.905.root"
        )
        self.f = km3io.OfflineReader(filename)
Exemple #2
0
    def test_apply_to_hits_from_km3io_iterator(self):
        calib = Calibration(filename=data_path("detx/km3net_offline.detx"))
        f = km3io.OfflineReader(data_path("offline/km3net_offline.root"))

        for event in f:
            chits = calib.apply(event.hits)
            assert 176 == len(chits.t0)
            assert np.allclose(
                [207747.825, 207745.656, 207743.836], chits.t0.tolist()[:3]
            )
            break
Exemple #3
0
    def test_apply_to_hits_from_km3io(self):
        calib = Calibration(filename=data_path("detx/km3net_offline.detx"))
        hits = km3io.OfflineReader(data_path("offline/km3net_offline.root"))[0].hits

        chits = calib.apply(hits)
        assert 176 == len(chits.t0)
        assert np.allclose([207747.825, 207745.656, 207743.836], chits.t0.tolist()[:3])

        chits = calib.apply(hits[:3])
        assert 3 == len(chits.t0)
        assert np.allclose([207747.825, 207745.656, 207743.836], chits.t0.tolist()[:3])
Exemple #4
0
    def configure(self):
        self._filename = self.get("filename")
        step_size = self.get("step_size", default=2000)

        self._reader = km3io.OfflineReader(self._filename, step_size=step_size)
        self.header = self._reader.header
        self.blobs = self._blob_generator()

        Provenance().record_input(self._filename,
                                  uuid=str(self._reader.uuid),
                                  comment="OfflinePump input")

        self.expose(self.header, "offline_header")
Exemple #5
0
    def test_apply_to_hits_with_pmt_id_aka_mc_hits_from_km3io(self):
        calib = Calibration(filename=data_path("detx/KM3NeT_-00000001_20171212.detx"))
        f = km3io.OfflineReader(
            data_path(
                "offline/mcv6.gsg_nue-CCHEDIS_1e4-1e6GeV.sirene.jte.jchain.aanet.1.root"
            )
        )

        for event in f:
            chits = calib.apply(event.mc_hits)
            assert 840 == len(chits.t0)
            assert np.allclose([3, 26, 24, 4, 23, 25], chits.channel_id[:6])
            assert np.allclose([3401, 3401, 3406, 3411, 5501, 5501], chits.dom_id[:6])
            assert np.allclose([1, 1, 6, 11, 1, 1], chits.floor[:6])
            assert np.allclose([34, 34, 34, 34, 55, 55], chits.du[:6])
            assert np.allclose(
                [
                    1679.18706571,
                    1827.14262054,
                    1926.71722628,
                    2433.83097585,
                    1408.35942832,
                    1296.51397496,
                ],
                chits.time[:6],
            )
            assert np.allclose(
                [2.034, 1.847, 1.938, 2.082, -54.96, -55.034], chits.pos_x[:6]
            )
            assert np.allclose(
                [-233.415, -233.303, -233.355, -233.333, -341.346, -341.303],
                chits.pos_y[:6],
            )
            assert np.allclose(
                [65.059, 64.83, 244.83, 425.111, 64.941, 64.83], chits.pos_z[:6]
            )
            assert np.allclose([4, 4, 4, 26, 4, 4], f.mc_hits.origin[0][:6].tolist())
            assert np.allclose(
                [36835, 36881, 37187, 37457, 60311, 60315],
                f.mc_hits.pmt_id[0][:6].tolist(),
            )
            break
Exemple #6
0
    def test_conversion_of_km3io_header(self):
        header = km3io.OfflineReader(data_path("offline/numucc.root")).header
        tab = header2table(header)
        print(tab)
        for p in [
            b"DAQ",
            b"PDF",
            b"can",
            b"can_user",
            b"coord_origin",
            b"cut_in",
            b"cut_nu",
            b"cut_primary",
            b"cut_seamuon",
            b"decay",
            b"detector",
            b"drawing",
            b"genhencut",
            b"genvol",
            b"kcut",
            b"livetime",
            b"model",
            b"ngen",
            b"norma",
            b"nuflux",
            b"physics",
            b"seed",
            b"simul",
            b"sourcemode",
            b"spectrum",
            b"start_run",
            b"target",
            b"usedetfile",
            b"xlat_user",
            b"xparam",
            b"zed_user",
        ]:
            assert p in tab.parameter

        h5header = HDF5Header.from_table(tab)
        assert h5header.can.zmin == header.can.zmin
Exemple #7
0
def h5extractf(root_file,
               outfile=None,
               without_full_reco=False,
               without_calibration=False):
    if without_calibration:
        calibration_fields = []
    else:
        calibration_fields = [
            "pos_x",
            "pos_y",
            "pos_z",
            "dir_x",
            "dir_y",
            "dir_z",
            "tdc",
        ]
    fields = {
        "event_info": [
            ("id", "event_id"),  # id gets renamed to event_id
            "run_id",
            ("t_sec", "timestamp"),
            ("t_ns", "nanoseconds"),
            ("mc_t", "mc_time"),
            "trigger_mask",
            "trigger_counter",
            "overlays",
            "det_id",
            "frame_index",
            "mc_run_id",
        ],
        # weights get put into event_info as well
        "event_info_weights": [
            "weight_w1",
            "weight_w2",
            "weight_w3",
            "weight_w4",
        ],
        "hits": [
            "channel_id",
            "dom_id",
            ("t", "time"),
            "tot",
            ("trig", "triggered"),
            *calibration_fields,
        ],
        "mc_hits": [
            "a",
            "origin",
            "pmt_id",
            ("t", "time"),
        ],
        "tracks": [
            "pos_x",
            "pos_y",
            "pos_z",
            "dir_x",
            "dir_y",
            "dir_z",
            "E",
            "t",
            ("len", "length"),
            "rec_type",
            ("lik", "likelihood"),
            "id",
        ],
        "mc_tracks": [
            "pos_x",
            "pos_y",
            "pos_z",
            "dir_x",
            "dir_y",
            "dir_z",
            ("E", "energy"),
            ("t", "time"),
            ("len", "length"),
            "pdgid",
            "id",
        ],
    }

    if outfile is None:
        outfile = root_file + ".h5"

    start_time = time.time()
    with h5py.File(outfile, "w") as f:

        _uuid = str(uuid4())
        Provenance().record_output(outfile,
                                   uuid=_uuid,
                                   comment="Converted HDF5 file")

        with km3io.OfflineReader(root_file) as r:
            Provenance().record_input(root_file,
                                      uuid=str(r.uuid),
                                      comment="Input ROOT file")

            if r.header is not None:
                print("Processing header")
                f.create_dataset(
                    "raw_header",
                    data=kp.io.hdf5.header2table(r.header),
                )
            print("Processing event_info")
            np_event_info = _branch_to_numpy(r, fields["event_info"])
            np_weights = _ak_to_numpy(r.w, fields["event_info_weights"])
            np_event_info[0].update(np_weights[0])
            np_w2 = _parse_w2list(r)
            if np_w2 is not None:
                np_event_info[0].update(np_w2[0])
            _to_hdf(f, "event_info", np_event_info)

            # TODO remove group_info once km3pipe does not require it anymore
            group_info = np.core.records.fromarrays(
                [np.arange(len(np_event_info[1]))], names=["group_id"])
            f.create_dataset("group_info", data=group_info)

            print("Processing tracks")
            reco = f.create_group("reco")
            for branch_data in _yield_tracks(
                    r.tracks,
                    fields["tracks"],
                    without_full_reco=without_full_reco):
                _to_hdf(reco, *branch_data)

            for field_name in ("hits", "mc_hits", "mc_tracks"):
                if r[field_name] is None:
                    continue
                print("Processing", field_name)
                np_branch = _branch_to_numpy(r[field_name], fields[field_name])
                if np_branch[1].sum() == 0:
                    # empty branch, e.g. mc_hits for data files
                    continue
                _to_hdf(f, field_name, np_branch)
        f.attrs.create("format_version", FORMAT_VERSION)
        f.attrs.create("km3pipe", kp.__version__)
        f.attrs.create("origin", root_file)
        f.attrs.create("kid", _uuid)
    print("Completed in {:.1f} s".format(time.time() - start_time))