Exemple #1
0
class ExcelCompiler(object):
    """Class responsible for taking cells and named_range and create a graph
       that can be serialized to disk, and executed independently of excel.
    """
    def __init__(self,
                 file,
                 ignore_sheets=[],
                 ignore_hidden=False,
                 debug=False):
        warnings.warn(
            "The ExcelCompiler class will disappear in a future version. Please use Spreadsheet instead.",
            PendingDeprecationWarning)
        self.spreadsheet = Spreadsheet(file=file,
                                       ignore_sheets=ignore_sheets,
                                       ignore_hidden=ignore_hidden,
                                       debug=debug)

    def clean_pointer(self):

        warnings.warn(
            "The ExcelCompiler class will disappear in a future version. Please use Spreadsheet.clean_pointer instead.",
            PendingDeprecationWarning)
        self.spreadsheet.clean_pointer()

    def gen_graph(self, outputs=[], inputs=[]):

        warnings.warn(
            "The ExcelCompiler class will disappear in a future version. Please use Spreadsheet.gen_graph() instead. "
            "Please also note that this function is now included in the init of Spreadsheet and therefore it shouldn't "
            "be called as such anymore.", PendingDeprecationWarning)
        return self.spreadsheet
Exemple #2
0
    def clean_pointer(self):
        sp = Spreadsheet(networkx.DiGraph(),self.cells, self.named_ranges, debug = self.debug)

        cleaned_cells, cleaned_ranged_names = sp.clean_pointer()
        self.cells = cleaned_cells
        self.named_ranges = cleaned_ranged_names
        self.pointers = set()
Exemple #3
0
    def clean_pointer(self):
        sp = Spreadsheet(networkx.DiGraph(),
                         self.cells,
                         self.named_ranges,
                         debug=self.debug)

        cleaned_cells, cleaned_ranged_names = sp.clean_pointer()
        self.cells = cleaned_cells
        self.named_ranges = cleaned_ranged_names
        self.pointers = set()
Exemple #4
0
    def clean_volatile(self, subset, orig_sp):
        G = orig_sp.G
        cells = orig_sp.cellmap
        named_ranges = orig_sp.named_ranges

        sp = Spreadsheet(G,cells, named_ranges, debug = self.debug)

        cleaned_cells, cleaned_ranged_names = sp.clean_volatile(subset)
        self.cells = cleaned_cells
        self.named_ranges = cleaned_ranged_names
        self.volatiles = set()
Exemple #5
0
 def __init__(self,
              file,
              ignore_sheets=[],
              ignore_hidden=False,
              debug=False):
     warnings.warn(
         "The ExcelCompiler class will disappear in a future version. Please use Spreadsheet instead.",
         PendingDeprecationWarning)
     self.spreadsheet = Spreadsheet(file=file,
                                    ignore_sheets=ignore_sheets,
                                    ignore_hidden=ignore_hidden,
                                    debug=debug)
Exemple #6
0
def reload_koala(file_name, ignore_sheets=None, bootstrap_equations=None):
    """Loads the Excel workbook into a koala Spreadsheet object"""
    global excel_compiler
    print("Loading workbook")
    excel_compiler = Spreadsheet.from_file_name(file_name,
                                                ignore_sheets=ignore_sheets)
    excel_compiler.clean_pointer()
    print("Workbook '%s' has been loaded." % file_name)
    print("Ignored worksheets %s" % ignore_sheets)
Exemple #7
0
 def __init__(self,
              file,
              ignore_sheets=[],
              ignore_hidden=False,
              debug=False):
     # print("___### Initializing Excel Compiler ###___")
     warnings.warn(
         "The ExcelCompiler class will disappear in a future version. Please use Spreadsheet instead.",
         PendingDeprecationWarning)
     self.sp = Spreadsheet.from_file_name(os.path.abspath(file),
                                          ignore_sheets=ignore_sheets,
                                          ignore_hidden=ignore_hidden,
                                          debug=debug,
                                          excel_compiler=True)
Exemple #8
0
def run_model(model_id, input_dict, output_names):
    """
    Load the model, set the inputs and return the calculated outputs
    TODO get this working roughly following these steps
      - Get serialised model from S3
      - Load model with koala
      - Extract inputs from payload
      - Set the inputs in the model
      - Extract required outputs from payload (all outputs if none specifically requested)
      - Get the required outputs from the model
      - Build and return response
    """
    # see if compiled model compiled
    try:
        compliled_string = bucket.Object(
            'compiled_models/{}'.format(model_id)).get()['Body'].read()
    except botocore.exceptions.ClientError as err:
        return err.response['Error']['Code']
    # XXX HACK Workaround needed for koala spreadsheet loading API
    # - need to write the file to a temp location for koala to read it...
    # - FIX: update koala.Spreadsheet / koala.serialize to take the file contents in directly
    if not os.path.exists('/tmp'):
        os.mkdir('/tmp')
    dummy_file_name = '/tmp/temp_{}.gzip'.format(model_id)
    with open(dummy_file_name, 'wb') as f:
        f.write(compliled_string)
    sheet = Spreadsheet.load(dummy_file_name)
    for name, value in input_dict.iteritems():
        sheet.set_value(name, value)
    results = {}
    for name in output_names:
        output_value = sheet.evaluate(name)
        if isinstance(output_value, ExcelError):
            output_value = str(output_value)
        results[name] = output_value
    # Cleanup previous workaround
    os.remove(dummy_file_name)
    if not os.listdir('/tmp'):
        os.rmdir('/tmp')
    return results
Exemple #9
0
    def gen_graph(self, outputs=[], inputs=[]):
        print '___### Generating Graph ###___'

        if len(outputs) == 0:
            preseeds = set(
                list(flatten(self.cells.keys())) +
                self.named_ranges.keys())  # to have unicity
        else:
            preseeds = set(outputs)

        preseeds = list(preseeds)  # to be able to modify the list

        seeds = []
        for o in preseeds:
            if o in self.named_ranges:
                reference = self.named_ranges[o]

                if is_range(reference):
                    if 'OFFSET' in reference or 'INDEX' in reference:
                        start_end = prepare_pointer(reference,
                                                    self.named_ranges)
                        rng = self.Range(start_end)
                        self.pointers.add(o)
                    else:
                        rng = self.Range(reference)

                    for address in rng.addresses:  # this is avoid pruning deletion
                        preseeds.append(address)
                    virtual_cell = Cell(o,
                                        None,
                                        value=rng,
                                        formula=reference,
                                        is_range=True,
                                        is_named_range=True)
                    seeds.append(virtual_cell)
                else:
                    # might need to be changed to actual self.cells Cell, not a copy
                    if 'OFFSET' in reference or 'INDEX' in reference:
                        self.pointers.add(o)

                    value = self.cells[
                        reference].value if reference in self.cells else None
                    virtual_cell = Cell(o,
                                        None,
                                        value=value,
                                        formula=reference,
                                        is_range=False,
                                        is_named_range=True)
                    seeds.append(virtual_cell)
            else:
                if is_range(o):
                    rng = self.Range(o)
                    for address in rng.addresses:  # this is avoid pruning deletion
                        preseeds.append(address)
                    virtual_cell = Cell(o,
                                        None,
                                        value=rng,
                                        formula=o,
                                        is_range=True,
                                        is_named_range=True)
                    seeds.append(virtual_cell)
                else:
                    seeds.append(self.cells[o])

        seeds = set(seeds)
        print "Seeds %s cells" % len(seeds)
        outputs = set(preseeds) if len(outputs) > 0 else [
        ]  # seeds and outputs are the same when you don't specify outputs

        cellmap, G = graph_from_seeds(seeds, self)

        if len(
                inputs
        ) != 0:  # otherwise, we'll set inputs to cellmap inside Spreadsheet
            inputs = list(set(inputs))

            # add inputs that are outside of calculation chain
            for i in inputs:
                if i not in cellmap:
                    if i in self.named_ranges:
                        reference = self.named_ranges[i]
                        if is_range(reference):

                            rng = self.Range(reference)
                            for address in rng.addresses:  # this is avoid pruning deletion
                                inputs.append(address)
                            virtual_cell = Cell(i,
                                                None,
                                                value=rng,
                                                formula=reference,
                                                is_range=True,
                                                is_named_range=True)
                            cellmap[i] = virtual_cell
                            G.add_node(
                                virtual_cell
                            )  # edges are not needed here since the input here is not in the calculation chain

                        else:
                            # might need to be changed to actual self.cells Cell, not a copy
                            virtual_cell = Cell(
                                i,
                                None,
                                value=self.cells[reference].value,
                                formula=reference,
                                is_range=False,
                                is_named_range=True)
                            cellmap[i] = virtual_cell
                            G.add_node(
                                virtual_cell
                            )  # edges are not needed here since the input here is not in the calculation chain
                    else:
                        if is_range(i):
                            rng = self.Range(i)
                            for address in rng.addresses:  # this is avoid pruning deletion
                                inputs.append(address)
                            virtual_cell = Cell(i,
                                                None,
                                                value=rng,
                                                formula=o,
                                                is_range=True,
                                                is_named_range=True)
                            cellmap[i] = virtual_cell
                            G.add_node(
                                virtual_cell
                            )  # edges are not needed here since the input here is not in the calculation chain
                        else:
                            cellmap[i] = self.cells[i]
                            G.add_node(
                                self.cells[i]
                            )  # edges are not needed here since the input here is not in the calculation chain

            inputs = set(inputs)

        print "Graph construction done, %s nodes, %s edges, %s cellmap entries" % (
            len(G.nodes()), len(G.edges()), len(cellmap))

        # undirected = networkx.Graph(G)
        # print "Number of connected components %s", str(number_connected_components(undirected))

        return Spreadsheet(G,
                           cellmap,
                           self.named_ranges,
                           pointers=self.pointers,
                           outputs=outputs,
                           inputs=inputs,
                           debug=self.debug)
Exemple #10
0
from koala.ExcelCompiler import ExcelCompiler
from koala.Spreadsheet import Spreadsheet

filename = "./examples/basic.xlsx"

print(filename)

### Graph Generation ###
c = ExcelCompiler(filename)
sp = c.gen_graph()

## Graph Serialization ###
print("Serializing to disk...")
sp.dump(filename.replace("xlsx", "gzip"))

### Graph Loading ###
print("Reading from disk...")
sp = Spreadsheet.load(filename.replace("xlsx", "gzip"))

### Graph Evaluation ###
sp.set_value('Sheet1!A1', 10)
print('New D1 value: %s' % str(sp.evaluate('Sheet1!D1')))

Exemple #11
0
from koala.ExcelCompiler import ExcelCompiler
from koala.Spreadsheet import Spreadsheet

file = "./examples/basic.xlsx"

print file

### Graph Generation ###
c = ExcelCompiler(file)
sp = c.gen_graph()

## Graph Serialization ###
print "Serializing to disk..."
sp.dump(file.replace("xlsx", "gzip"))

### Graph Loading ###
print "Reading from disk..."
sp = Spreadsheet.load(file.replace("xlsx", "gzip"))

### Graph Evaluation ###
sp.set_value('Sheet1!A1', 10)
print 'New D1 value: %s' % str(sp.evaluate('Sheet1!D1'))