def test_simple(self, device, dtype): P = torch.tensor( [[[308.0, 139.0, 231.0, 84.0], [481.0, 161.0, 358.0, 341.0], [384.0, 387.0, 459.0, 102.0]]], device=device, dtype=dtype, ) K_expected = torch.tensor( [[[17.006138, 122.441254, 390.211426], [0.0, 228.743622, 577.167480], [0.0, 0.0, 712.675232]]], device=device, dtype=dtype, ) R_expected = torch.tensor( [[[0.396559, 0.511023, -0.762625], [ 0.743249, -0.666318, -0.060006 ], [0.538815, 0.543024, 0.644052]]], device=device, dtype=dtype, ) t_expected = torch.tensor([[[-6.477699], [1.129624], [0.143123]]], device=device, dtype=dtype) K_estimated, R_estimated, t_estimated = epi.KRt_from_projection(P) assert_allclose(K_estimated, K_expected, atol=1e-4, rtol=1e-4) assert_allclose(R_estimated, R_expected, atol=1e-4, rtol=1e-4) assert_allclose(t_estimated, t_expected, atol=1e-4, rtol=1e-4)
def test_krt_from_projection(self, device, dtype): P = torch.tensor([[ [10., 0., 30., 100.], [0., 20., 40., 160.], [0., 0., 1., 3.], ]], device=device, dtype=dtype) K_expected = torch.tensor([[ [10., 0., 30.], [0., 20., 40.], [0., 0., 1.], ]], device=device, dtype=dtype) R_expected = torch.tensor([[ [1., 0., 0.], [0., 1., 0.], [0., 0., 1.], ]], device=device, dtype=dtype) t_expected = torch.tensor([[[1.], [2.], [3.]]], device=device, dtype=dtype) K_estimated, R_estimated, t_estimated = epi.KRt_from_projection(P) assert_allclose(K_estimated, K_expected) assert_allclose(R_estimated, R_expected) assert_allclose(t_estimated, t_expected)
def test_shape(self, batch_size, device, dtype): B: int = batch_size P = torch.rand(B, 3, 4, device=device, dtype=dtype) K, R, t = epi.KRt_from_projection(P) assert K.shape == (B, 3, 3) assert R.shape == (B, 3, 3) assert t.shape == (B, 3, 1)
def test_krt_from_projection(self, device, dtype): P = torch.tensor([[[10.0, 0.0, 30.0, 100.0], [0.0, 20.0, 40.0, 160.0], [0.0, 0.0, 1.0, 3.0]]], device=device, dtype=dtype) K_expected = torch.tensor( [[[10.0, 0.0, 30.0], [0.0, 20.0, 40.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype) R_expected = torch.tensor( [[[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]], device=device, dtype=dtype) t_expected = torch.tensor([[[1.0], [2.0], [3.0]]], device=device, dtype=dtype) K_estimated, R_estimated, t_estimated = epi.KRt_from_projection(P) assert_allclose(K_estimated, K_expected, atol=1e-4, rtol=1e-4) assert_allclose(R_estimated, R_expected, atol=1e-4, rtol=1e-4) assert_allclose(t_estimated, t_expected, atol=1e-4, rtol=1e-4)
def test_smoke(self, device, dtype): P = torch.randn(1, 3, 4, device=device, dtype=dtype) K, R, t = epi.KRt_from_projection(P) assert K.shape == (1, 3, 3) assert R.shape == (1, 3, 3) assert t.shape == (1, 3, 1)