Exemple #1
0
        def op_script(data: torch.Tensor) -> torch.Tensor:
            return kornia.hsv_to_rgb(data)

            data = torch.tensor([[[[21., 22.], [22., 22.]],
                                  [[13., 14.], [14., 14.]],
                                  [[8., 8.], [8., 8.]]]])  # 3x2x2

            actual = op_script(data)
            expected = kornia.hsv_to_rgb(data)
            assert_allclose(actual, expected)
Exemple #2
0
def augment(im, aug_type):
    ''' Augment images as per given augmentation type. '''
    if aug_type == 'normal':
        im = im
    elif aug_type == 'rotated':
        rot_angle = np.random.choice([-90, 90, 180])
        im = kornia_affine(im, rot_angle, 'rotate')
    elif aug_type == 'hsv':
        adjustFactor = np.random.choice(
            [-0.1, -0.075, -0.05, 0.05, 0.075, 0.1])
        hue, sat, value = torch.chunk(kornia.rgb_to_hsv(im), chunks=3, dim=-3)
        adjust_mat = (torch.ones(1, 512, 512) * adjustFactor).cuda()
        hueNew = hue + hue * adjust_mat.cuda()
        hueNew = torch.clamp(hueNew, -2 * np.pi, 2 * np.pi)
        satNew = sat + sat * adjust_mat.cuda()
        satNew = torch.clamp(satNew, -2 * np.pi, 2 * np.pi)
        new_im = torch.cat([hueNew, satNew, value], dim=-3)
        im = kornia.hsv_to_rgb(new_im)
    elif aug_type == 'gauss_noise':
        im = augment_gaussian_noise(im)
    elif aug_type == 'mirror':
        im = torch.flip(im, [-2])
    return im
Exemple #3
0
def _hsv_to_rgb(img: torch.Tensor) -> torch.Tensor:
    return kornia.hsv_to_rgb(img)