Exemple #1
0
def main():

    (X_train, y_train), (X_val, y_val), (X_test, y_test) = load_data()
    print(X_train.shape, y_train.shape, X_val.shape, y_val.shape, X_test.shape,
          y_test.shape)

    if DO_TRAINING:
        print('Building model...')
        model = build_model(13, 20, 3)
        # # define the loss function & optimizer that model should
        # criterion = nn.CrossEntropyLoss()
        # optimizer = torch.optim.SGD(model.parameters(), lr=LEARNING_RATE, nesterov=True,
        #                             momentum=0.9, dampening=0, weight_decay=L2_REG)
        # model.compile(loss=criterion, optimizer=optimizer, metrics=['acc'])
        print(model.summary())

        # train model
        print('Training model...')
        hist = model.fit(X_train,
                         y_train,
                         validation_data=(X_val, y_val),
                         epochs=NUM_EPOCHS,
                         batch_size=BATCH_SIZE)
        kru.show_plots(hist.history,
                       metric='accuracy',
                       plot_title='Training metrics')

        # evaluate model performance on train/eval & test datasets
        print('\nEvaluating model performance...')
        loss, acc = model.evaluate(X_train, y_train, verbose=0)
        print('  Training dataset  -> loss: %.4f - acc: %.4f' % (loss, acc))
        loss, acc = model.evaluate(X_val, y_val, verbose=0)
        print('  Cross-val dataset -> loss: %.4f - acc: %.4f' % (loss, acc))
        oss, acc = model.evaluate(X_test, y_test, verbose=0)
        print('  Test dataset      -> loss: %.4f - acc: %.4f' % (loss, acc))

        # save model state
        kru.save_model(model, MODEL_SAVE_NAME)
        del model

    if DO_PREDICTION:
        print('\nRunning predictions...')
        # load model state from .pt file
        model = kru.load_model(MODEL_SAVE_NAME)
        print(model.summary())

        print('\nEvaluating model performance...')
        loss, acc = model.evaluate(X_train, y_train)
        print('  Training dataset  -> loss: %.4f - acc: %.4f' % (loss, acc))
        loss, acc = model.evaluate(X_val, y_val)
        print('  Cross-val dataset -> loss: %.4f - acc: %.4f' % (loss, acc))
        oss, acc = model.evaluate(X_test, y_test)
        print('  Test dataset      -> loss: %.4f - acc: %.4f' % (loss, acc))

        y_preds = np.argmax(model.predict(X_test), axis=1)
        # display all predictions
        print(f'Sample labels: {y_test}')
        print(f'Sample predictions: {y_preds}')
        print(f'We got {(y_preds == y_test).sum()}/{len(y_test)} correct!!')
def main():
    (X_train, y_train), (X_val, y_val), (X_test, y_test) = load_data()
    print(f"X_train.shape = {X_train.shape} - y_train.shape = {y_train.shape} " +
          f"- X_val.shape = {X_val.shape} - y_val.shape = {y_val.shape} " +
          f"- X_test.shape = {X_test.shape} - y_test.shape = {y_test.shape}")

    if SHOW_SAMPLE:
        print(f"Displaying sample of {SAMPLE_SIZE} images...")
        rand_indexes = np.random.randint(0, len(X_test), SAMPLE_SIZE)
        sample_images = X_test[rand_indexes]
        sample_labels = y_test[rand_indexes]
        display_sample(sample_images, sample_labels,
                       plot_title='Sample of %d images' % SAMPLE_SIZE)

    if DO_TRAINING:
        model = build_model(l2_loss_lambda=L2_REG)
        print(model.summary())

        lr_scheduler = LearningRateScheduler(step_lr)
        hist = model.fit(X_train, y_train, epochs=NUM_EPOCHS, batch_size=BATCH_SIZE,
                         validation_data=(X_val, y_val), callbacks=[lr_scheduler])
        kru.show_plots(hist.history, metric='sparse_categorical_accuracy')

        # evaluate model performance
        print('\nEvaluating model performance...')
        loss, acc = model.evaluate(X_train, y_train)
        print(f'  Training dataset  -> loss: {loss:.4f} - acc: {acc:.4f}')
        loss, acc = model.evaluate(X_val, y_val)
        print(f'  Cross-val dataset  -> loss: {loss:.4f} - acc: {acc:.4f}')
        loss, acc = model.evaluate(X_test, y_test)
        print(f'  Test dataset  -> loss: {loss:.4f} - acc: {acc:.4f}')

        kru.save_model(model, MODEL_SAVE_PATH)
        del model

    if DO_PREDICTION:
        model = kru.load_model(MODEL_SAVE_PATH)
        print(model.summary())

        y_pred = model.predict(X_test)
        y_pred = np.argmax(y_pred, axis=1)
        print('Sample labels (50): ', y_test[:50])
        print('Sample predictions (50): ', y_pred[:50])
        print('We got %d/%d incorrect!' %
              ((y_pred != y_test).sum(), len(y_test)))

        if SHOW_SAMPLE:
            # display sample predictions
            rand_indexes = np.random.randint(0, len(X_test), SAMPLE_SIZE)
            sample_images = X_test[rand_indexes]
            sample_labels = y_test[rand_indexes]
            sample_predictions = y_pred[rand_indexes]

            model_type = 'CNN' if USE_CNN else 'ANN'
            display_sample(sample_images, sample_labels, sample_predictions,
                           num_rows=5, num_cols=10, plot_title=f'Keras {model_type} - {SAMPLE_SIZE} random predictions')

            del model
Exemple #3
0
def main():

    (X_train, y_train), (X_val, y_val), (X_test, y_test) = load_data()
    print(
        f"X_train.shape = {X_train.shape} - y_train.shape = {y_train.shape} " +
        f"- X_val.shape = {X_val.shape} - y_val.shape = {y_val.shape} " +
        f"- X_test.shape = {X_test.shape} - y_test.shape = {y_test.shape}")
    y_train, y_val, y_test = y_train.astype(np.float), y_val.astype(
        np.float), y_test.astype(np.float)

    if DO_TRAINING:
        model = build_model(NUM_FEATURES, 32, 32, NUM_CLASSES, L2_REG)
        print(model.summary())

        print('Training model...')
        hist = model.fit(X_train,
                         y_train,
                         validation_split=0.20,
                         epochs=NUM_EPOCHS,
                         batch_size=BATCH_SIZE)
        kru.show_plots(hist.history, metric='acc')

        # evaluate model performance
        print('\nEvaluating model performance...')
        loss, acc = model.evaluate(X_train, y_train)
        print(f'  Training dataset  -> loss: {loss:.4f} - acc: {acc:.4f}')
        loss, acc = model.evaluate(X_val, y_val)
        print(f'  Cross-val dataset  -> loss: {loss:.4f} - acc: {acc:.4f}')
        loss, acc = model.evaluate(X_test, y_test)
        print(f'  Test dataset  -> loss: {loss:.4f} - acc: {acc:.4f}')

        kru.save_model(model, MODEL_SAVE_NAME)
        del model

    if DO_PREDICTION:
        print('\nRunning predictions...')
        model = kru.load_model(MODEL_SAVE_NAME)
        print(model.summary())

        y_pred = np.argmax(np.round(model.predict(X_test)), axis=1)
        y_true = np.argmax(y_test, axis=1)
        # display output
        print('Sample labels: ', y_true)
        print('Sample predictions: ', y_pred)
        print('We got %d/%d correct!' %
              ((y_true == y_pred).sum(), len(y_true)))
Exemple #4
0
def main():
    # generate data with noise
    M, C = 1.8, 32.0
    X, y = generate_temp_data(M, C, numelems=500, std=25)
    print(f"X.shape = {X.shape}, y.shape = {y.shape}")

    # display plot of generated data
    plt.figure(figsize=(8, 6))
    plt.scatter(X, y, s=40, c='steelblue')
    plt.title(f'Original Data -> $y = {M:.2f} * X + {C:.2f}$')
    plt.show()

    model = build_model()
    print(model.summary())
    print('Before training: ')
    print(f'   Weight: {model.layers[0].get_weights()[0]} ' +
          f'Bias: {model.layers[0].get_weights()[1]}')

    # train the model
    print('Training....', flush=True)
    hist = model.fit(X, y, epochs=5000, batch_size=32, verbose=2)
    kru.show_plots(hist.history,
                   metric='r2_score',
                   plot_title="Performance Metrics")

    print('After training: ')
    print(f'   Weight: {model.layers[0].get_weights()[0]} ' +
          f'bias: {model.layers[0].get_weights()[1]}')

    # display plot of prediction with gerated data
    plt.figure(figsize=(8, 6))
    y_pred = model.predict(X)
    plt.scatter(X, y, s=40, c='steelblue')
    plt.plot(X, y_pred, lw=2, c='firebrick')
    Mp, Cp = model.layers[0].get_weights()[0][0], \
        model.layers[0].get_weights()[1][0]
    plt.title(f'Prediction -> $y = {Mp:.2f} * X + {Cp:.2f}$')
    plt.show()
Exemple #5
0
X_test = X_test / 255.0

model = tf.keras.models.Sequential([
    tf.keras.layers.Flatten(input_shape=(28, 28)),
    tf.keras.layers.Dense(128, activation=tf.nn.relu),
    tf.keras.layers.Dense(64, activation=tf.nn.relu),
    tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])

model.compile(loss='sparse_categorical_crossentropy',
              optimizer='adam',
              metrics=['accuracy'])
print(model.summary())

hist = model.fit(X_train,
                 y_train,
                 validation_split=0.2,
                 epochs=25,
                 batch_size=32)
kru.show_plots(hist.history, metric='accuracy')

# evaluate performance
loss, acc = model.evaluate(X_train, y_train)
print(f"Training data -> loss: {loss:.3f} - acc: {acc:.3f}")
loss, acc = model.evaluate(X_test, y_test)
print(f"Testing data  -> loss: {loss:.3f} - acc: {acc:.3f}")

# save model
kru.save_model(model, 'kr_fashion2')
del model
Exemple #6
0
                    class_weight=class_weight,
                    batch_size=256,
                    validation_data=(X_test, y_test),
                    callbacks=[
                        EarlyStopping(monitor="val_f1",
                                      mode='max',
                                      patience=5,
                                      restore_best_weights=True)
                    ])

results = model.evaluate(X_test, y_test)
print(results)

import kr_helper_funcs as kr
from sklearn.metrics import classification_report, confusion_matrix
kr.show_plots(history.history)

predictions = model.predict_classes(X_test)
print(classification_report(y_test, predictions))
kr.plot_cm(y_test, predictions, ["unpaid", "paid"])
plt.show()

# from threading import Lock
# lock = Lock()

import os


def save_model(name='without_postcode', model=model):
    # lock.aquire()
    # try:
Exemple #7
0
plt.show()
from tensorflow.keras.callbacks import EarlyStopping
early_stop = EarlyStopping(monitor='val_loss', patience=5)

model.fit(x=X_train_rus,
          y=y_train_rus,
          epochs=25,
          class_weight=class_weight,
          batch_size=256,
          validation_data=(X_test, y_test),
          callbacks=[early_stop])

import kr_helper_funcs as kr
from sklearn.metrics import classification_report, confusion_matrix
kr.show_plots(model.history.history)

predictions = model.predict_classes(X_test)
print(classification_report(y_test, predictions))
kr.plot_cm(y_test, predictions, ["unpaid", "paid"])
plt.show()
from tensorflow.keras.models import load_model

# model = tf.keras.models.load_model('lending-club.h5')
import os
name = 'without_postcode'
if not os.path.exists(name):
    os.mkdir(name)
tf.keras.models.save_model(model, '{}/lending-club.h5'.format(name))
pd.DataFrame.from_dict(model.history.history).to_csv(
    name + "/" + 'lending-club-history.csv'.format(name), index=False)
Exemple #8
0
def show_plots(history):
    kru.show_plots(history)