Exemple #1
0
    def _test_gen_schur(dtype):
        rand = _Random()
        a = rand.randmat(5, 5, dtype)
        b = rand.randmat(5, 5, dtype)

        s, t, q, z = gen_schur(a, b)[:4]

        assert_array_almost_equal(dtype, np.dot(np.dot(q, s), z.T.conj()), a)
        assert_array_almost_equal(dtype, np.dot(np.dot(q, t), z.T.conj()), b)
Exemple #2
0
    def _test_gen_schur(dtype):
        rand = _Random()
        a = rand.randmat(5, 5, dtype)
        b = rand.randmat(5, 5, dtype)

        s, t, q, z = gen_schur(a, b)[:4]

        assert_array_almost_equal(dtype, np.dot(np.dot(q, s), z.T.conj()), a)
        assert_array_almost_equal(dtype, np.dot(np.dot(q, t), z.T.conj()), b)
Exemple #3
0
    def _test_evecs_from_gen_schur(dtype):
        rand = _Random()
        a = rand.randmat(5, 5, dtype)
        b = rand.randmat(5, 5, dtype)

        s, t, q, z, alpha, beta = gen_schur(a, b)

        vl, vr = evecs_from_gen_schur(s,
                                      t,
                                      q,
                                      z,
                                      select=None,
                                      left=True,
                                      right=True)

        assert_array_almost_equal(dtype, np.dot(a, np.dot(vr, np.diag(beta))),
                                  np.dot(b, np.dot(vr, np.diag(alpha))))
        assert_array_almost_equal(
            dtype, np.dot(np.dot(np.diag(beta), vl.T.conj()), a),
            np.dot(np.dot(np.diag(alpha), vl.T.conj()), b))

        select = np.array([True, True, False, False, False], dtype=bool)

        vl, vr = evecs_from_gen_schur(s,
                                      t,
                                      q,
                                      z,
                                      select,
                                      left=True,
                                      right=True)

        assert vr.shape[1] == 2
        assert vl.shape[1] == 2
        assert_array_almost_equal(
            dtype, np.dot(a, np.dot(vr, np.diag(beta[select]))),
            np.dot(b, np.dot(vr, np.diag(alpha[select]))))
        assert_array_almost_equal(
            dtype, np.dot(np.dot(np.diag(beta[select]), vl.T.conj()), a),
            np.dot(np.dot(np.diag(alpha[select]), vl.T.conj()), b))

        vl, vr = evecs_from_gen_schur(s,
                                      t,
                                      q,
                                      z,
                                      lambda i: i < 2,
                                      left=True,
                                      right=True)

        assert vr.shape[1] == 2
        assert vl.shape[1] == 2
        assert_array_almost_equal(
            dtype, np.dot(a, np.dot(vr, np.diag(beta[select]))),
            np.dot(b, np.dot(vr, np.diag(alpha[select]))))
        assert_array_almost_equal(
            dtype, np.dot(np.dot(np.diag(beta[select]), vl.T.conj()), a),
            np.dot(np.dot(np.diag(alpha[select]), vl.T.conj()), b))
Exemple #4
0
    def _test_evecs_from_gen_schur(dtype):
        rand = _Random()
        a = rand.randmat(5, 5, dtype)
        b = rand.randmat(5, 5, dtype)

        s, t, q, z, alpha, beta = gen_schur(a, b)

        vl, vr = evecs_from_gen_schur(s, t, q, z , select=None,
                                      left=True, right=True)

        assert_array_almost_equal(dtype, np.dot(a, np.dot(vr, np.diag(beta))),
                                  np.dot(b, np.dot(vr, np.diag(alpha))))
        assert_array_almost_equal(dtype,
                                  np.dot(np.dot(np.diag(beta), vl.T.conj()),
                                         a),
                                  np.dot(np.dot(np.diag(alpha), vl.T.conj()),
                                         b))

        select = np.array([True, True, False, False, False], dtype=bool)

        vl, vr = evecs_from_gen_schur(s, t, q, z, select,
                                      left=True, right=True)

        assert_equal(vr.shape[1], 2)
        assert_equal(vl.shape[1], 2)
        assert_array_almost_equal(dtype,
                                  np.dot(a, np.dot(vr,
                                                   np.diag(beta[select]))),
                                  np.dot(b, np.dot(vr,
                                                   np.diag(alpha[select]))))
        assert_array_almost_equal(dtype,
                                  np.dot(np.dot(np.diag(beta[select]),
                                                vl.T.conj()),
                                         a),
                                  np.dot(np.dot(np.diag(alpha[select]),
                                                vl.T.conj()),
                                         b))

        vl, vr = evecs_from_gen_schur(s, t, q, z, lambda i: i<2, left=True,
                                      right=True)

        assert_equal(vr.shape[1], 2)
        assert_equal(vl.shape[1], 2)
        assert_array_almost_equal(dtype,
                                  np.dot(a, np.dot(vr,
                                                   np.diag(beta[select]))),
                                  np.dot(b, np.dot(vr,
                                                   np.diag(alpha[select]))))
        assert_array_almost_equal(dtype,
                                  np.dot(np.dot(np.diag(beta[select]),
                                                vl.T.conj()),
                                         a),
                                  np.dot(np.dot(np.diag(alpha[select]),
                                                vl.T.conj()),
                                         b))
Exemple #5
0
    def _test_convert_r2c_gen_schur(dtype):
        rand = _Random()
        a = rand.randmat(10, 10, dtype)
        b = rand.randmat(10, 10, dtype)

        s, t, q, z = gen_schur(a, b)[:4]
        s2, t2, q2, z2 = convert_r2c_gen_schur(s, t, q, z)

        assert_array_almost_equal(dtype, np.dot(np.dot(q, s), z.T.conj()), a)
        assert_array_almost_equal(dtype, np.dot(np.dot(q, t), z.T.conj()), b)
        assert_array_almost_equal(dtype, np.dot(np.dot(q2, s2), z2.T.conj()),
                                  a)
        assert_array_almost_equal(dtype, np.dot(np.dot(q2, t2), z2.T.conj()),
                                  b)
Exemple #6
0
    def _test_convert_r2c_gen_schur(dtype):
        rand = _Random()
        a = rand.randmat(10, 10, dtype)
        b = rand.randmat(10, 10, dtype)

        s, t, q, z = gen_schur(a, b)[:4]
        s2, t2, q2, z2 = convert_r2c_gen_schur(s, t, q, z)

        assert_array_almost_equal(dtype, np.dot(np.dot(q, s), z.T.conj()), a)
        assert_array_almost_equal(dtype, np.dot(np.dot(q, t), z.T.conj()), b)
        assert_array_almost_equal(dtype, np.dot(np.dot(q2, s2), z2.T.conj()),
                                  a)
        assert_array_almost_equal(dtype, np.dot(np.dot(q2, t2), z2.T.conj()),
                                  b)
Exemple #7
0
    def _test_order_gen_schur(dtype):
        rand = _Random()
        a = rand.randmat(10, 10, dtype)
        b = rand.randmat(10, 10, dtype)

        s, t, q, z, alpha, beta = gen_schur(a, b)

        s2, t2, q2, z2, alpha2, beta2 = order_gen_schur(
            lambda i: i > 2 and i < 7, s, t, q, z)

        assert_array_almost_equal(dtype, np.dot(np.dot(q, s), z.T.conj()), a)
        assert_array_almost_equal(dtype, np.dot(np.dot(q, t), z.T.conj()), b)
        assert_array_almost_equal(dtype, np.dot(np.dot(q2, s2), z2.T.conj()),
                                  a)
        assert_array_almost_equal(dtype, np.dot(np.dot(q2, t2), z2.T.conj()),
                                  b)

        #Sorting here is a bit tricky: For real matrices we expect
        #for complex conjugated pairs identical real parts - however
        #that seems messed up (only an error on the order of machine precision)
        #in the division. The solution here is to sort and compare the real
        #and imaginary parts separately. The only error that would not be
        #catched in this comparison is if the real and imaginary parts would
        #be assembled differently in the two arrays - an error that is highly
        #unlikely.
        assert_array_almost_equal(dtype, np.sort((alpha / beta).real),
                                  np.sort((alpha2 / beta2).real))
        assert_array_almost_equal(dtype, np.sort((alpha / beta).imag),
                                  np.sort((alpha2 / beta2).imag))
        assert_array_almost_equal(dtype, np.sort(
            (alpha[3:7] / beta[3:7]).real),
                                  np.sort((alpha2[:4] / beta2[:4]).real))
        assert_array_almost_equal(dtype, np.sort(
            (alpha[3:7] / beta[3:7]).imag),
                                  np.sort((alpha2[:4] / beta2[:4]).imag))

        sel = [False, False, 0, True, True, True, 1, False, False, False]

        s3, t3, q3, z3 = order_gen_schur(sel, s, t, q, z)[:4]
        assert_array_almost_equal(dtype, np.dot(np.dot(q3, s3), z3.T.conj()),
                                  a)
        assert_array_almost_equal(dtype, np.dot(np.dot(q3, t3), z3.T.conj()),
                                  b)
        assert_array_almost_equal(dtype, s2, s3)
        assert_array_almost_equal(dtype, t2, t3)
        assert_array_almost_equal(dtype, q2, q3)
        assert_array_almost_equal(dtype, z2, z3)
Exemple #8
0
    def _test_order_gen_schur(dtype):
        rand = _Random()
        a = rand.randmat(10, 10, dtype)
        b = rand.randmat(10, 10, dtype)

        s, t, q, z, alpha, beta = gen_schur(a, b)

        s2, t2, q2, z2, alpha2, beta2 = order_gen_schur(lambda i: i>2 and i<7,
                                                        s, t, q, z)

        assert_array_almost_equal(dtype, np.dot(np.dot(q, s), z.T.conj()), a)
        assert_array_almost_equal(dtype, np.dot(np.dot(q, t), z.T.conj()), b)
        assert_array_almost_equal(dtype, np.dot(np.dot(q2, s2), z2.T.conj()),
                                  a)
        assert_array_almost_equal(dtype, np.dot(np.dot(q2, t2), z2.T.conj()),
                                  b)

        #Sorting here is a bit tricky: For real matrices we expect
        #for complex conjugated pairs identical real parts - however
        #that seems messed up (only an error on the order of machine precision)
        #in the division. The solution here is to sort and compare the real
        #and imaginary parts separately. The only error that would not be
        #catched in this comparison is if the real and imaginary parts would
        #be assembled differently in the two arrays - an error that is highly
        #unlikely.
        assert_array_almost_equal(dtype, np.sort((alpha/beta).real),
                                  np.sort((alpha2/beta2).real))
        assert_array_almost_equal(dtype, np.sort((alpha/beta).imag),
                                  np.sort((alpha2/beta2).imag))
        assert_array_almost_equal(dtype, np.sort((alpha[3:7]/beta[3:7]).real),
                                  np.sort((alpha2[:4]/beta2[:4]).real))
        assert_array_almost_equal(dtype, np.sort((alpha[3:7]/beta[3:7]).imag),
                                  np.sort((alpha2[:4]/beta2[:4]).imag))

        sel = [False, False, 0, True, True, True, 1, False, False, False]

        s3, t3, q3, z3 = order_gen_schur(sel, s, t, q, z)[:4]
        assert_array_almost_equal(dtype, np.dot(np.dot(q3, s3), z3.T.conj()),
                                  a)
        assert_array_almost_equal(dtype, np.dot(np.dot(q3, t3), z3.T.conj()),
                                  b)
        assert_array_almost_equal(dtype, s2, s3)
        assert_array_almost_equal(dtype, t2, t3)
        assert_array_almost_equal(dtype, q2, q3)
        assert_array_almost_equal(dtype, z2, z3)