Exemple #1
0
    def test_from_array_1D(self):
        # 1-dim iterables/vectors are treated as column vectors
        input = [[1], [2], [3], [4]]
        expected = [[1], [2], [3], [4]]

        e = EigenArray.from_array(input)
        em = e.get_matrix()
        numpy.testing.assert_equal(em, expected)

        e2 = EigenArray.from_array(em)
        em2 = e2.get_matrix()
        numpy.testing.assert_equal(em, em2)
Exemple #2
0
    def test_matrix_init(self):
        # Test that construction does not fail when passing valid matrices as
        # initializer
        m1 = [[0, 1, 3], [0.3, 0.1, 10], [-1, 8.1, 4.7]]
        m2_d = EigenArray.from_array(m1, 'd')
        m2_f = EigenArray.from_array(m1, 'f')

        Homography.from_matrix(m1, 'd')
        Homography.from_matrix(m1, 'f')
        Homography.from_matrix(m2_d.get_matrix(), 'd')
        Homography.from_matrix(m2_d.get_matrix(), 'f')
        Homography.from_matrix(m2_f.get_matrix(), 'd')
        Homography.from_matrix(m2_f.get_matrix(), 'f')
Exemple #3
0
    def test_point_map(self):
        h_f = Homography('f')
        h_d = Homography('d')

        p_af = EigenArray.from_array([[2.2, 3.3]], 'f')
        p_f = p_af.get_matrix()[0]
        p_ad = EigenArray.from_array([[5.5, 6.6]], 'd')
        p_d = p_ad.get_matrix()[0]

        # float-float
        numpy.testing.assert_almost_equal(h_f.map(p_f), p_f)
        # float-double
        numpy.testing.assert_almost_equal(h_f.map(p_d), p_d)
        # double-float
        numpy.testing.assert_almost_equal(h_d.map(p_f), p_f)
        # double-double
        numpy.testing.assert_almost_equal(h_d.map(p_d), p_d)

        # Code to generate truth
        h = numpy.random.rand(3, 3)
        h = h / numpy.linalg.norm(h)
        p0 = numpy.random.rand(3)
        p0[2] = 1
        p1 = numpy.dot(h, p0)
        p1 = p1[:2] / p1[2]
        h_d = Homography.from_matrix(h, 'd')

        # map from Numpy array.
        numpy.testing.assert_almost_equal(h_d.map(p0[:2]).ravel(), p1)

        # map from EigenArray
        p0 = EigenArray.from_array([p0[:2]])
        numpy.testing.assert_almost_equal(
            h_d.map(p0.get_matrix()[0]).ravel(), p1)

        # Another explicit case.
        p0 = numpy.array([1923.47, 645.676, 1])
        h = numpy.array(
            [[
                5.491496261770000276e-01, -1.125428185150000038e-01,
                1.358427031619999923e+02
            ],
             [
                 -1.429513389049999993e-02, 6.035527375529999849e-01,
                 5.923971959490000216e+01
             ], [-2.042570000000000164e-06, -2.871670000000000197e-07, 1]])
        p1 = numpy.dot(h, p0)
        p1 = p1[:2] / p1[2]
        H = Homography.from_matrix(h)
        P = EigenArray.from_array([p0[:2]])
        numpy.testing.assert_almost_equal(H.map(P.get_matrix()[0]).ravel(), p1)
Exemple #4
0
    def test_clone_look_at(self):
        pp = EigenArray.from_array([[300], [400]])
        k = CameraIntrinsics(1000, [300, 400])
        focus = EigenArray.from_array([[0], [1], [-2]])
        center = EigenArray.from_array([[3], [-4], [7]])

        base = Camera(center, Rotation(), k)
        cam = base.clone_look_at(numpy.array([0, 1, 2]))
        nose.tools.assert_not_equal(base, cam)

        ifocus = cam.project([0, 1, 2])
        nose.tools.assert_almost_equal(
            numpy.linalg.norm(ifocus - pp.get_matrix().T, 2), 0., 12)

        ifocus_up = cam.project([0, 1, 4])
        tmp = (ifocus_up - pp.get_matrix().T)[0]
        nose.tools.assert_almost_equal(tmp[0], 0., 12)
        nose.tools.assert_true(tmp[1] < 0.)
Exemple #5
0
    def test_from_array(self):
        # from list
        expected_list = [[0.4, 0], [1, 1.123], [2.253, 4.768124]]
        ea = EigenArray.from_array(expected_list)
        em = ea.get_matrix()
        numpy.testing.assert_array_equal(em, expected_list)

        # from ndarray
        expected_ndar = numpy.array(expected_list)
        ea = EigenArray.from_array(expected_ndar)
        em = ea.get_matrix()
        numpy.testing.assert_array_equal(em, expected_ndar)

        # from EigenArray, which should return the input object
        ea = EigenArray(3, 2)
        em = ea.get_matrix()
        em[:] = expected_list
        ea2 = EigenArray.from_array(em)
        em2 = ea2.get_matrix()
        numpy.testing.assert_array_equal(em2, em)
Exemple #6
0
    def test_equal(self):
        cam1 = Camera()
        cam2 = Camera()
        nose.tools.assert_equal(cam1, cam1)
        nose.tools.assert_equal(cam1, cam2)

        center = EigenArray.from_array([[1], [2], [3]])
        rotation = Rotation.from_axis_angle([0, 1, 0], math.pi / 2.)
        cam1 = Camera(center, rotation)
        cam2 = Camera(center, rotation)
        nose.tools.assert_equal(cam1, cam1)
        nose.tools.assert_equal(cam1, cam2)
Exemple #7
0
    def test_to_from_string(self):
        cam = Camera()
        cam_s = cam.as_string()
        cam2 = Camera.from_string(cam_s)
        print("Default camera string:\n%s" % cam_s)
        print("Default newcam string:\n%s" % cam2.as_string())
        nose.tools.assert_equal(cam, cam2)

        center = EigenArray.from_array([[1], [2], [3]])
        rotation = Rotation.from_axis_angle([0, 1, 0], math.pi / 2.)
        cam = Camera(center, rotation)
        cam_s = cam.as_string()
        cam2 = Camera.from_string(cam_s)
        print("Custom camera string:\n%s" % cam_s)
        print("Custom newcam string:\n%s" % cam2.as_string())
        nose.tools.assert_equal(cam, cam2)
Exemple #8
0
    def test_read_write_krtd_file(self):
        # Use a random string filename to avoid name collision.
        fname = 'temp_camera_test_read_write_krtd_file.txt'

        try:
            for _ in range(100):
                c = (rand(3) * 2 - 1) * 100
                center = EigenArray.from_array([c])
                rotation = Rotation.from_quaternion(
                    numpy.random.rand(4) * 2 - 1)
                intrinsics = CameraIntrinsics(10, (5, 5), 1.2, 0.5, [4, 5, 6])
                c1 = Camera(center, rotation, intrinsics)

                c1.write_krtd_file(fname)
                c2 = Camera.from_krtd_file(fname)

                err = numpy.linalg.norm(c1.center - c2.center)
                assert err < 1e-9, ''.join(
                    ['Centers are different by ',
                     str(err)])

                c1.rotation.angle_from(c2.rotation) < 1e-12

                attr = [
                    'focal_length', 'aspect_ratio', 'principle_point', 'skew',
                    'dist_coeffs'
                ]
                for att in attr:
                    v1 = numpy.array(getattr(c1.intrinsics, att))
                    v2 = numpy.array(getattr(c2.intrinsics, att))
                    err = numpy.linalg.norm(v1 - v2)
                    assert err < 1e-8, ''.join(
                        ['Difference ',
                         str(err), ' for attribute: ', att])
        finally:
            if os.path.isfile(fname):
                os.remove(fname)
Exemple #9
0
 def test_norm(self):
     e = EigenArray.from_array([[1], [2], [3], [4]])
     numpy.linalg.norm(e.get_matrix()) == numpy.sqrt(1 + 4 + 9 + 16)
Exemple #10
0
 def test_translation_initialized(self):
     center = EigenArray.from_array([[1], [2], [3]])
     rotation = Rotation.from_axis_angle([0, 1, 0], math.pi / 2.)
     cam = Camera(center, rotation)
     numpy.testing.assert_array_equal(cam.translation,
                                      -(rotation * center.get_matrix()))
Exemple #11
0
 def test_rotation_initialized(self):
     center = EigenArray.from_array([[1], [2], [3]])
     r_expected = Rotation.from_axis_angle([0, 1, 0], math.pi / 8)
     cam = Camera(center, r_expected)
     nose.tools.assert_is_not(cam.rotation, r_expected)
     nose.tools.assert_equal(cam.rotation, r_expected)