Exemple #1
0
    def _step(self):
        # grab image container from port using traits
        optical_c = self.grab_input_using_trait('optical_image')
        thermal_c = self.grab_input_using_trait('thermal_image')

        # Get python image from conatiner (just for show)
        optical_npy = optical_c.image().asarray().astype('uint8')
        thermal_npy = thermal_c.image().asarray().astype('uint16')

        thermal_norm = normalize_thermal(thermal_npy)

        if thermal_norm is not None and optical_npy is not None:
            # compute transform
            ret, transform, _ = compute_transform(
                optical_npy,
                thermal_norm,
                warp_mode=cv2.MOTION_HOMOGRAPHY,
                match_low_res=True,
                good_match_percent=self._good_match_percent,
                ratio_test=self._ratio_test,
                match_height=self._match_height,
                min_matches=self._min_matches,
                min_inliers=self._min_inliers)
        else:
            ret = False

        if ret:
            # TODO: Make all of these computations conditional on port connection
            inv_transform = np.linalg.inv(transform)

            thermal_warped = cv2.warpPerspective( thermal_npy, transform, \
              ( optical_npy.shape[1], optical_npy.shape[0] ) )
            optical_warped = cv2.warpPerspective( optical_npy, inv_transform, \
              ( thermal_npy.shape[1], thermal_npy.shape[0] ) )

            #self.push_to_port_using_trait( 'thermal_to_optical_homog',
            #   F2FHomography.from_matrix( transform, 'd' )
            #self.push_to_port_using_trait( 'optical_to_thermal_homog',
            #   F2FHomography.from_matrix( inv_transform, 'd' )

            self.push_to_port_using_trait(
                'warped_thermal_image',
                ImageContainer.fromarray(thermal_warped))
            self.push_to_port_using_trait(
                'warped_optical_image',
                ImageContainer.fromarray(optical_warped))
        else:
            print('alignment failed!')

            #self.push_to_port_using_trait( "thermal_to_optical_homog", F2FHomography() )
            #self.push_to_port_using_trait( "optical_to_thermal_homog", F2FHomography() )

            self.push_to_port_using_trait('warped_optical_image',
                                          ImageContainer())
            self.push_to_port_using_trait('warped_thermal_image',
                                          ImageContainer())

        self._base_step()
Exemple #2
0
    def _dowork(self, img_container):
        """
        Helper to decouple the algorithm and pipeline logic

        CommandLine:
            xdoctest viame.processes.camtrawl.processes CamtrawlDetectFishProcess._dowork

        Example:
            >>> from viame.processes.camtrawl.processes import *
            >>> from kwiver.vital.types import ImageContainer
            >>> import kwiver.sprokit.pipeline.config
            >>> # construct dummy process instance
            >>> conf = kwiver.sprokit.pipeline.config.empty_config()
            >>> self = CamtrawlDetectFishProcess(conf)
            >>> self._configure()
            >>> # construct test data
            >>> from vital.util import VitalPIL
            >>> from PIL import Image as PILImage
            >>> pil_img = PILImage.open(ub.grabdata('https://i.imgur.com/Jno2da3.png'))
            >>> pil_img = PILImage.fromarray(np.zeros((512, 512, 3), dtype=np.uint8))
            >>> img_container = ImageContainer(VitalPIL.from_pil(pil_img))
            >>> # Initialize the background detector by sending 10 black frames
            >>> for i in range(10):
            >>>     empty_set = self._dowork(img_container)
            >>> # now add a white box that should be detected
            >>> np_img = np.zeros((512, 512, 3), dtype=np.uint8)
            >>> np_img[300:340, 220:380] = 255
            >>> img_container = ImageContainer.fromarray(np_img)
            >>> detection_set = self._dowork(img_container)
            >>> assert len(detection_set) == 1
            >>> obj = detection_set[0]
        """
        # This should be read as np.uint8
        np_img = img_container.asarray()

        detection_set = DetectedObjectSet()
        ct_detections = self.detector.detect(np_img)

        for detection in ct_detections:
            bbox = BoundingBoxD(*detection.bbox.coords)
            mask = detection.mask.astype(np.uint8)
            vital_mask = ImageContainer.fromarray(mask)
            dot = DetectedObjectType("Motion", 1.0)
            obj = DetectedObject(bbox, 1.0, dot, mask=vital_mask)
            detection_set.add(obj)
        return detection_set
Exemple #3
0
        def _test_numpy(dtype_name, nchannels, order='c'):
            np_img = create_numpy_image(dtype_name, nchannels, order)
            img_container = ImageContainer.fromarray(np_img)
            recast = img_container.asarray()

            # asarray always returns 3 channels
            np_img = np.atleast_3d(np_img)

            vital_img = img_container.image()
            pixel_type_name = vital_img.pixel_type_name()

            pixel_type_name = vital_img.pixel_type_name()
            want = map_dtype_name_to_pixel_type(dtype_name)

            assert pixel_type_name == want, 'want={} but got={}'.format(
                want, pixel_type_name)

            if not np.all(np_img == recast):
                raise AssertionError(
                    'Failed dtype={}, nchannels={}, order={}'.format(
                        dtype_name, nchannels, order))
    def draw(self, detected_object_set, image):
        u_image = cv2.cvtColor(image.asarray(), cv2.COLOR_RGB2BGR)
        for detected_object in detected_object_set:
            bbox = detected_object.bounding_box()
            confidence = detected_object.confidence()
            if self.bbox_shape == "rectangle":
                u_image = cv2.rectangle(u_image,
                              (int(bbox.min_x()), int(bbox.min_y())),
                              (int(bbox.max_x()), int(bbox.max_y())),
                              self.bbox_color,
                              self.bbox_thickness)
                text_origin = (int(bbox.min_x()),int(bbox.min_y()-self.bbox_thickness))
            else:
                center = ((int(bbox.min_x()) + int(bbox.max_x()))//2,
                          (int(bbox.min_y()) + int(bbox.max_y()))//2)
                radius = int(math.sqrt(math.pow(float(bbox.max_y()) - \
                                                float(bbox.min_y()), 2) + \
                                       math.pow(float(bbox.max_x()) - \
                                                float(bbox.min_x()), 2)))
                u_image = cv2.circle(u_image, center, radius, self.bbox_color,
                                     self.bbox_thickness)
                text_origin = (center[0]-radius, center[1]-radius-self.bbox_thickness)

            types = detected_object.type()
            if types is None:
                label = "{0}".format(confidence)
            else:
                label = "{0}: {1}".format(types.get_most_likely_class(),
                                          types.get_most_likely_score())
            u_image = cv2.putText(u_image,
                        label,
                        text_origin,
                        self.font, self.font_scale, self.bbox_color, self.font_thickness)
        u_image = cv2.cvtColor(u_image, cv2.COLOR_BGR2RGB)
        image_container = ImageContainer.fromarray(u_image)
        return image_container
Exemple #5
0
 def test_save_directory(self):
     dummy_image = np.zeros([100, 100])
     image_container = ImageContainer.fromarray(dummy_image)
     with tempfile.TemporaryDirectory() as directory_name:
         self.instance.save(directory_name, image_container)
Exemple #6
0
 def test_save_nonexistant(self):
     dummy_image = np.zeros([100, 100])
     image_container = ImageContainer.fromarray(dummy_image)
     self.instance.save("nonexistant_filename.txt", image_container)