# np.random.seed(0) # generate the data (Xp, Xu, yu) = gendata(100, 100, 0.2) # generate some lists theta_list = np.linspace(0, 1, 30) sigma_list = np.array([0.1, 0.5, 0.8, 1.0]) lambda_list = np.array([0.001, 0.1, 1, 10]) cr = 1 kfolds = 4 # calculate the class prior with cl1fast fl1_theta, fl1_info = cl1fast(Xp, Xu) # calculate the class prior theta, l1_c2info = l1_cpe_cv(Xp, Xu, cr=2) # plot the result pyplt.plot(fl1_info['theta_list'], fl1_info['score'], label='fastL1') pyplt.plot(l1_c2info['theta_list'], l1_c2info['score'], label='l1cr2') pyplt.xlabel(r'$\theta$') pyplt.ylabel(r'cl_1') pyplt.legend(loc='upper center') pyplt.axis([0, 1, 0, 2]) pyplt.show() # plot the results
dataset = sys.argv[3] nunlab = int(sys.argv[4]) npos = int(sys.argv[5]) theta = float(sys.argv[6]) # create the file name and check if simulation was already run (file exists) datafname = '../results/{dataset}/{dataset}-{method}-theta-{theta}-nu-{nu}-np-{np}-{seed}.mat'.format(dataset=dataset, \ method=method, theta=theta,np=npos, nu=nunlab, seed=seed ) datafname = os.path.abspath(os.path.join(os.getcwd(), datafname)) if os.path.isfile(datafname): print('Simulation already run for this seed: {0}'.format(datafname)) exit() # set the simulation function if method=='cl1': simfun = lambda Xp, Xu: cl1fast(Xp, Xu) elif method=='l1c1': simfun = lambda Xp, Xu: l1_cpe_cv(Xp, Xu, cr=1) # load the dataset np.random.seed(seed) (Xp, Xu, yu) = simdata.loaddataset(datapath, dataset, npos, nunlab, theta) # time the execution start_time = time.time() # run simulation if method=='cl1': theta_est, info = cl1fast(Xp, Xu) elif method=='l1c1': theta_est, info = l1_cpe_cv(Xp, Xu,cr=1)