Exemple #1
0
def _try_to_fix_agent_yaw(
    sat_rast: SemanticRasterizer,
    agent: np.ndarray,
    selected_track_id: int,
    history_frames: np.ndarray,
    history_agents: List[np.ndarray],
    history_num_frames: int,
    angle_diff_th_in_degree: float,
    distance_th_in_agent: float,
    num_use_history: int,
    lane_polygon_buffer: float,
) -> None:

    if PERCEPTION_LABELS[np.argmax(
            agent["label_probabilities"])] != "PERCEPTION_LABEL_CAR":
        return agent, False

    agent_centroid_m = agent["centroid"]
    agent_yaw_rad = float(agent["yaw"])

    # TODO(kaizaburo): history_positions も world coords で計算する (それに合わせてハイパラも調整する)
    world_from_agent = compute_agent_pose(agent_centroid_m, agent_yaw_rad)
    agent_from_world = np.linalg.inv(world_from_agent)

    # history_num_frames + 1 because it also includes the current frame
    history_coords_offset, _, history_availability = _create_targets_for_deep_prediction(
        history_num_frames + 1, history_frames, selected_track_id,
        history_agents, agent_from_world, agent_yaw_rad)

    history_positions = []
    for pos, avail in zip(history_coords_offset, history_availability):
        if avail == 0.0:
            break
        history_positions.append(pos)
    history_positions = np.array(history_positions)

    new_yaw = fix_yaw_by_surrounding_lane_and_history(
        sat_rast=sat_rast,
        centroid=agent_centroid_m,
        yaw_origin=agent_yaw_rad,
        history_positions=history_positions,
        angle_diff_th_in_degree=angle_diff_th_in_degree,
        distance_th_in_agent=distance_th_in_agent,
        num_use_history=num_use_history,
        lane_polygon_buffer=lane_polygon_buffer,
    )
    if new_yaw is not None:
        agent = agent.copy()
        agent["yaw"] = new_yaw
        return agent, True
    else:
        return agent, False
Exemple #2
0
def base_displacement(zarr_dataset: ChunkedDataset, cfg: dict) -> np.ndarray:
    future_num_frames = cfg["model_params"]["future_num_frames"]
    ref_frame = zarr_dataset.frames[0]
    world_from_agent = compute_agent_pose(
        ref_frame["ego_translation"][:2],
        rotation33_as_yaw((ref_frame["ego_rotation"])))

    future_positions, *_ = get_relative_poses(
        num_frames=future_num_frames,
        frames=zarr_dataset.frames[1:1 + future_num_frames],
        selected_track_id=None,
        agents=[np.empty(0) for _ in range(future_num_frames)],
        agent_from_world=np.linalg.inv(world_from_agent),
        current_agent_yaw=rotation33_as_yaw(ref_frame["ego_rotation"]),
    )
    return future_positions
Exemple #3
0
def generate_agent_sample_tl_persistence(
        state_index: int,
        frames: np.ndarray,
        agents: np.ndarray,
        tl_faces: np.ndarray,
        selected_track_id: Optional[int],
        render_context: RenderContext,
        history_num_frames: int,
        history_step_size: int,
        future_num_frames: int,
        future_step_size: int,
        filter_agents_threshold: float,
        rasterizer: Optional[Rasterizer] = None,
        perturbation: Optional[Perturbation] = None,
) -> dict:
    """Generates the inputs and targets to train a deep prediction model. A deep prediction model takes as input
    the state of the world (here: an image we will call the "raster"), and outputs where that agent will be some
    seconds into the future.

    This function has a lot of arguments and is intended for internal use, you should try to use higher level classes
    and partials that use this function.

    Args:
        state_index (int): The anchor frame index, i.e. the "current" timestep in the scene
        frames (np.ndarray): The scene frames array, can be numpy array or a zarr array
        agents (np.ndarray): The full agents array, can be numpy array or a zarr array
        tl_faces (np.ndarray): The full traffic light faces array, can be numpy array or a zarr array
        selected_track_id (Optional[int]): Either None for AV, or the ID of an agent that you want to
        predict the future of. This agent is centered in the raster and the returned targets are derived from
        their future states.
        raster_size (Tuple[int, int]): Desired output raster dimensions
        pixel_size (np.ndarray): Size of one pixel in the real world
        ego_center (np.ndarray): Where in the raster to draw the ego, [0.5,0.5] would be the center
        history_num_frames (int): Amount of history frames to draw into the rasters
        history_step_size (int): Steps to take between frames, can be used to subsample history frames
        future_num_frames (int): Amount of history frames to draw into the rasters
        future_step_size (int): Steps to take between targets into the future
        filter_agents_threshold (float): Value between 0 and 1 to use as cutoff value for agent filtering
        based on their probability of being a relevant agent
        rasterizer (Optional[Rasterizer]): Rasterizer of some sort that draws a map image
        perturbation (Optional[Perturbation]): Object that perturbs the input and targets, used
    to train models that can recover from slight divergence from training set data

    Raises:
        ValueError: A ValueError is returned if the specified ``selected_track_id`` is not present in the scene
        or was filtered by applying the ``filter_agent_threshold`` probability filtering.

    Returns:
        dict: a dict object with the raster array, the future offset coordinates (meters),
        the future yaw angular offset, the future_availability as a binary mask
    """
    #  the history slice is ordered starting from the latest frame and goes backward in time., ex. slice(100, 91, -2)
    all_history_slice = get_history_slice(state_index, state_index, history_step_size, include_current_state=True)
    history_slice = get_history_slice(state_index, history_num_frames, history_step_size, include_current_state=True)
    future_slice = get_future_slice(state_index, future_num_frames, future_step_size)

    all_history_frames = frames[all_history_slice].copy()  # TL data will be based on all history
    history_frames = frames[history_slice].copy()  # copy() required if the object is a np.ndarray
    future_frames = frames[future_slice].copy()

    sorted_frames = np.concatenate((history_frames[::-1], future_frames))  # from past to future

    # get agents (past and future)
    agent_slice = get_agents_slice_from_frames(sorted_frames[0], sorted_frames[-1])
    agents = agents[agent_slice].copy()  # this is the minimum slice of agents we need
    history_frames["agent_index_interval"] -= agent_slice.start  # sync interval with the agents array
    future_frames["agent_index_interval"] -= agent_slice.start  # sync interval with the agents array
    history_agents = filter_agents_by_frames(history_frames, agents)
    future_agents = filter_agents_by_frames(future_frames, agents)

    # sync interval with the traffic light faces array
    tl_slice = get_tl_faces_slice_from_frames(all_history_frames[-1], all_history_frames[0])  # -1 is the farthest
    all_history_frames["traffic_light_faces_index_interval"] -= tl_slice.start
    history_tl_faces = filter_tl_faces_by_frames(all_history_frames, tl_faces[tl_slice].copy())

    # State you want to predict the future of.
    cur_frame = history_frames[0]
    cur_agents = history_agents[0]

    if selected_track_id is None:
        agent_centroid_m = cur_frame["ego_translation"][:2]
        agent_yaw_rad = rotation33_as_yaw(cur_frame["ego_rotation"])
        agent_extent_m = np.asarray((EGO_EXTENT_LENGTH, EGO_EXTENT_WIDTH, EGO_EXTENT_HEIGHT))
        selected_agent = None
    else:
        # this will raise IndexError if the agent is not in the frame or under agent-threshold
        # this is a strict error, we cannot recover from this situation
        try:
            agent = filter_agents_by_track_id(
                filter_agents_by_labels(cur_agents, filter_agents_threshold), selected_track_id
            )[0]
        except IndexError:
            raise ValueError(f" track_id {selected_track_id} not in frame or below threshold")
        agent_centroid_m = agent["centroid"]
        agent_yaw_rad = float(agent["yaw"])
        agent_extent_m = agent["extent"]
        selected_agent = agent

    input_im = (
        None
        if not rasterizer
        else rasterizer.rasterize(history_frames, history_agents, history_tl_faces, selected_agent)
    )

    world_from_agent = compute_agent_pose(agent_centroid_m, agent_yaw_rad)
    agent_from_world = np.linalg.inv(world_from_agent)
    raster_from_world = render_context.raster_from_world(agent_centroid_m, agent_yaw_rad)

    future_coords_offset, future_yaws_offset, future_availability = _create_targets_for_deep_prediction(
        future_num_frames, future_frames, selected_track_id, future_agents, agent_from_world, agent_yaw_rad
    )

    # history_num_frames + 1 because it also includes the current frame
    history_coords_offset, history_yaws_offset, history_availability = _create_targets_for_deep_prediction(
        history_num_frames + 1, history_frames, selected_track_id, history_agents, agent_from_world, agent_yaw_rad
    )

    return {
        "image": input_im,
        "target_positions": future_coords_offset,
        "target_yaws": future_yaws_offset,
        "target_availabilities": future_availability,
        "history_positions": history_coords_offset,
        "history_yaws": history_yaws_offset,
        "history_availabilities": history_availability,
        "world_to_image": raster_from_world,  # TODO deprecate
        "raster_from_agent": raster_from_world @ world_from_agent,
        "raster_from_world": raster_from_world,
        "agent_from_world": agent_from_world,
        "world_from_agent": world_from_agent,
        "centroid": agent_centroid_m,
        "yaw": agent_yaw_rad,
        "extent": agent_extent_m,
    }
Exemple #4
0
def generate_multi_agent_sample(
    state_index: int,
    frames: np.ndarray,
    agents: np.ndarray,
    tl_faces: np.ndarray,
    selected_track_id: Optional[int],
    render_context: RenderContext,
    history_num_frames: int,
    history_step_size: int,
    future_num_frames: int,
    future_step_size: int,
    filter_agents_threshold: float,
    rasterizer: Optional[Rasterizer] = None,
    perturbation: Optional[Perturbation] = None,
    min_frame_history: int = MIN_FRAME_HISTORY,
    min_frame_future: int = MIN_FRAME_FUTURE,
) -> dict:
    """Generates the inputs and targets to train a deep prediction model. A deep prediction model takes as input
    the state of the world (here: an image we will call the "raster"), and outputs where that agent will be some
    seconds into the future.

    This function has a lot of arguments and is intended for internal use, you should try to use higher level classes
    and partials that use this function.

    Args:
        state_index (int): The anchor frame index, i.e. the "current" timestep in the scene
        frames (np.ndarray): The scene frames array, can be numpy array or a zarr array
        agents (np.ndarray): The full agents array, can be numpy array or a zarr array
        tl_faces (np.ndarray): The full traffic light faces array, can be numpy array or a zarr array
        selected_track_id (Optional[int]): Either None for AV, or the ID of an agent that you want to
        predict the future of. This agent is centered in the raster and the returned targets are derived from
        their future states.
        render_context (RenderContext):
            raster_size (Tuple[int, int]): Desired output raster dimensions
            pixel_size (np.ndarray): Size of one pixel in the real world
            ego_center (np.ndarray): Where in the raster to draw the ego, [0.5,0.5] would be the center
        history_num_frames (int): Amount of history frames to draw into the rasters
        history_step_size (int): Steps to take between frames, can be used to subsample history frames
        future_num_frames (int): Amount of history frames to draw into the rasters
        future_step_size (int): Steps to take between targets into the future
        filter_agents_threshold (float): Value between 0 and 1 to use as cutoff value for agent filtering
        based on their probability of being a relevant agent
        rasterizer (Optional[Rasterizer]): Rasterizer of some sort that draws a map image
        perturbation (Optional[Perturbation]): Object that perturbs the input and targets, used
to train models that can recover from slight divergence from training set data

    Raises:
        ValueError: A ValueError is returned if the specified ``selected_track_id`` is not present in the scene
        or was filtered by applying the ``filter_agent_threshold`` probability filtering.

    Returns:
        dict: a dict object with the raster array, the future offset coordinates (meters),
        the future yaw angular offset, the future_availability as a binary mask
    """
    #  the history slice is ordered starting from the latest frame and goes backward in time., ex. slice(100, 91, -2)
    history_slice = get_history_slice(state_index,
                                      history_num_frames,
                                      history_step_size,
                                      include_current_state=True)
    future_slice = get_future_slice(state_index, future_num_frames,
                                    future_step_size)

    history_frames = frames[history_slice].copy(
    )  # copy() required if the object is a np.ndarray
    future_frames = frames[future_slice].copy()

    sorted_frames = np.concatenate(
        (history_frames[::-1], future_frames))  # from past to future

    # get agents (past and future)
    agent_slice = get_agents_slice_from_frames(sorted_frames[0],
                                               sorted_frames[-1])
    agents = agents[agent_slice].copy(
    )  # this is the minimum slice of agents we need
    history_frames[
        "agent_index_interval"] -= agent_slice.start  # sync interval with the agents array
    future_frames[
        "agent_index_interval"] -= agent_slice.start  # sync interval with the agents array
    history_agents = filter_agents_by_frames(history_frames, agents)
    future_agents = filter_agents_by_frames(future_frames, agents)

    try:
        tl_slice = get_tl_faces_slice_from_frames(
            history_frames[-1], history_frames[0])  # -1 is the farthest
        # sync interval with the traffic light faces array
        history_frames["traffic_light_faces_index_interval"] -= tl_slice.start
        history_tl_faces = filter_tl_faces_by_frames(history_frames,
                                                     tl_faces[tl_slice].copy())
    except ValueError:
        history_tl_faces = [
            np.empty(0, dtype=TL_FACE_DTYPE) for _ in history_frames
        ]

    if perturbation is not None:
        history_frames, future_frames = perturbation.perturb(
            history_frames=history_frames, future_frames=future_frames)

    # State you want to predict the future of.
    cur_frame = history_frames[0]
    cur_agents = history_agents[0]

    cur_agents = filter_agents_by_labels(cur_agents, filter_agents_threshold)
    agent_track_ids_u64 = cur_agents["track_id"]
    # uint64 --> int64
    agent_track_ids = agent_track_ids_u64.astype(np.int64)
    assert np.alltrue(agent_track_ids == agent_track_ids_u64)
    agent_track_ids = np.concatenate(
        [np.array([-1], dtype=np.int64), agent_track_ids])

    # Draw image with Ego car in center
    selected_agent = None
    input_im = (None if not rasterizer else rasterizer.rasterize(
        history_frames, history_agents, history_tl_faces, selected_agent))

    future_coords_offset_list = []
    future_yaws_offset_list = []
    future_availability_list = []
    history_coords_offset_list = []
    history_yaws_offset_list = []
    history_availability_list = []
    agent_centroid_list = []
    agent_yaw_list = []
    agent_extent_list = []
    filtered_track_ids_list = []
    for selected_track_id in agent_track_ids:
        if selected_track_id == -1:
            agent_centroid = cur_frame["ego_translation"][:2]
            agent_yaw_rad = rotation33_as_yaw(cur_frame["ego_rotation"])
            agent_extent = np.asarray(
                (EGO_EXTENT_LENGTH, EGO_EXTENT_WIDTH, EGO_EXTENT_HEIGHT))

            world_from_agent = compute_agent_pose(agent_centroid,
                                                  agent_yaw_rad)
            agent_from_world = np.linalg.inv(world_from_agent)
            raster_from_world = render_context.raster_from_world(
                agent_centroid, agent_yaw_rad)

            agent_origin = np.zeros((2, ), dtype=np.float32)
        else:
            # this will raise IndexError if the agent is not in the frame or under agent-threshold
            # this is a strict error, we cannot recover from this situation
            try:
                agent = filter_agents_by_track_id(cur_agents,
                                                  selected_track_id)[0]
            except IndexError:
                raise ValueError(
                    f" track_id {selected_track_id} not in frame or below threshold"
                )
            agent_centroid = agent["centroid"]
            agent_yaw_rad = agent["yaw"]
            agent_extent = agent["extent"]

            agent_origin = transform_point(agent_centroid, agent_from_world)
        future_coords_offset, future_yaws_offset, future_availability = _create_targets_for_deep_prediction(
            future_num_frames, future_frames, selected_track_id, future_agents,
            agent_from_world, agent_yaw_rad, agent_origin)
        if selected_track_id != -1 and np.sum(
                future_availability) < min_frame_future:
            # Not enough future to predict, skip this agent.
            continue
        # history_num_frames + 1 because it also includes the current frame
        history_coords_offset, history_yaws_offset, history_availability = _create_targets_for_deep_prediction(
            history_num_frames + 1, history_frames, selected_track_id,
            history_agents, agent_from_world, agent_yaw_rad, agent_origin)
        if selected_track_id != -1 and np.sum(
                history_availability) < min_frame_history:
            # Not enough history to predict, skip this agent.
            continue
        future_coords_offset_list.append(future_coords_offset)
        future_yaws_offset_list.append(future_yaws_offset)
        future_availability_list.append(future_availability)
        history_coords_offset_list.append(history_coords_offset)
        history_yaws_offset_list.append(history_yaws_offset)
        history_availability_list.append(history_availability)
        agent_centroid_list.append(agent_centroid)
        agent_yaw_list.append(agent_yaw_rad)
        agent_extent_list.append(agent_extent)
        filtered_track_ids_list.append(selected_track_id)

    # Get pixel coordinate
    agent_centroid_array = np.array(agent_centroid_list)
    agent_centroid_in_pixel = transform_points(agent_centroid_array,
                                               raster_from_world)

    return {
        "image": input_im,  # (h, w, ch)
        # --- All below is in world coordinate ---
        "target_positions":
        np.array(future_coords_offset_list),  # (n_agents, num_frames, 2)
        "target_yaws":
        np.array(future_yaws_offset_list),  # (n_agents, num_frames, 1)
        "target_availabilities":
        np.array(future_availability_list),  # (n_agents, num_frames)
        "history_positions":
        np.array(history_coords_offset_list),  # (n_agents, num_frames, 2)
        "history_yaws":
        np.array(history_yaws_offset_list),  # (n_agents, num_frames, 1)
        "history_availabilities":
        np.array(history_availability_list),  # (n_agents, num_frames)
        # "world_to_image": raster_from_world,  # (3, 3)
        "raster_from_world": raster_from_world,  # (3, 3)
        "centroid": agent_centroid_array,  # (n_agents, 2)
        "yaw": np.array(agent_yaw_list),  # (n_agents, 1)
        "extent": np.array(agent_extent_list),  # (n_agents, 3)
        "track_ids": np.array(filtered_track_ids_list),  # (n_agents)
        "centroid_pixel": agent_centroid_in_pixel,  # (n_agents, 2)
    }