def main(): train_set, test_set = divide(scale(load_data()), 0.2) c = optimize_constant(train_set) w = linear_regression_w(train_set, c) e = calculate_error(test_set, w) print('regularization constant = %f\nerror = %6.2f' % (c, percent(e)))
def main(): train_set, test_set = divide(load_data()) c = optimize_c(train_set) w, b = fit_svm(train_set, c) e = calculate_error(test_set, w, b) print('C = %f\nerror = %6.2f' % (c, percent(e)))
def main(): train_set, test_set = divide(load_data(negative=0)) size, lambda_c = optimize_size_lambda(train_set, 2) theta1, theta2 = thetas(train_set, size, lambda_c, 2) print('hidden layer size = %d' % size) print('lambda = %f' % lambda_c) print('error = %6.2f' % percent(calculate_error(test_set, theta1, theta2)))
def main(): train_set, test_set = divide(load_data())