Exemple #1
0
def main():
    text = ('I have a cat. His name is Bruno. '
            'I have a dog too. His name is Rex. '
            'Her name is Rex too.')

    corpus = tokenize_by_sentence(text)

    storage = WordStorage()
    storage.update(corpus)

    encoded = encode_text(storage, corpus)

    two = NGramTrie(2, encoded)
    trie = NGramTrie(3, encoded)

    context = (
        storage.get_id('name'),
        storage.get_id('is'),
    )

    generator = BackOffGenerator(storage, trie, two)

    expected = 'rex'
    actual = storage.get_word(generator._generate_next_word(context))

    print(f'TEXT:\n{text}')
    print(f'\nEXPECTED WORD AFTER name is IS {expected}')
    print(f'ACTUAL WORD AFTER name is IS {actual}')

    save_model(generator, 'model.txt')
    load_model('model.txt')

    return actual == expected
    def test_load_model_takes_less_time(self):
        with open('lab_1/data.txt', 'r', encoding='utf-8') as big_file:
            big_data = big_file.read()
        tokenized_data = tokenize_by_sentence(big_data)
        storage = WordStorage()
        storage.update(tokenized_data)
        context = (
            storage.get_id('despite'),
            storage.get_id('the'),
        )

        start_time_generate = time()
        encoded = encode_text(storage, tokenized_data)
        trie = NGramTrie(3, encoded)
        generator = NGramTextGenerator(storage, trie)
        generated_text = generator.generate_text(context, 3)
        end_time_generate = time() - start_time_generate
        save_model(generator, 'model_training')

        start_time_saved = time()
        loaded_model = load_model('model_training')
        new_result = loaded_model.generate_text(context, 3)
        end_time_saved = time() - start_time_saved

        self.assertGreater(end_time_generate, end_time_saved)
        self.assertEqual(generated_text, new_result)
    def test_load_model_ideal(self):
        corpus = ('i', 'have', 'a', 'cat', '<END>', 'his', 'name', 'is',
                  'bruno', '<END>', 'i', 'have', 'a', 'dog', 'too', '<END>',
                  'his', 'name', 'is', 'rex', '<END>', 'her', 'name', 'is',
                  'rex', 'too', '<END>')

        storage = WordStorage()
        storage.update(corpus)

        encoded = encode_text(storage, corpus)

        trie = NGramTrie(2, encoded)

        generator = NGramTextGenerator(storage, trie)

        save_model(generator, 'my_awesome_model')
        loaded_model = load_model('my_awesome_model')

        self.assertEqual(generator._n_gram_trie.n_grams,
                         loaded_model._n_gram_trie.n_grams)
        self.assertEqual(len(generator._n_gram_trie.n_gram_frequencies),
                         len(loaded_model._n_gram_trie.n_gram_frequencies))
        for ngram, frequency in generator._n_gram_trie.n_gram_frequencies.items(
        ):
            self.assertTrue(
                ngram in loaded_model._n_gram_trie.n_gram_frequencies)
            self.assertEqual(
                frequency, loaded_model._n_gram_trie.n_gram_frequencies[ngram])

        self.assertEqual(len(generator._word_storage.storage),
                         len(loaded_model._word_storage.storage))
        for word, id_num in generator._word_storage.storage.items():
            self.assertTrue(word in loaded_model._word_storage.storage)
            self.assertEqual(id_num, loaded_model._word_storage.storage[word])
Exemple #4
0
def realize_likelihood_generator(text):
    likelihood_storage = WordStorage()
    likelihood_storage.update(text)
    context = (likelihood_storage.get_id('i'),
               likelihood_storage.get_id('shall'),)
    model = load_model('lab_4/likelihood_model.json')
    generator = LikelihoodBasedTextGenerator(model.word_storage, model.n_gram_trie)
    likelihood_text_generated = generator.generate_text(context, 3)

    return decode_text(likelihood_storage, likelihood_text_generated)
    def test_load_model_has_generator_methods(self):
        corpus = ('i', 'have', 'a', 'cat', '<END>',
                  'his', 'name', 'is', 'bruno', '<END>',
                  'i', 'have', 'a', 'dog', 'too', '<END>',
                  'his', 'name', 'is', 'rex', '<END>',
                  'her', 'name', 'is', 'rex', 'too', '<END>')

        storage = WordStorage()
        storage.update(corpus)

        encoded = encode_text(storage, corpus)

        trie = NGramTrie(2, encoded)

        generator = NGramTextGenerator(storage, trie)

        save_model(generator, 'my_awesome_model')
        loaded_model = load_model('my_awesome_model')

        self.assertEquals(dir(loaded_model), dir(generator))