def test_check_calculate_tf_idf_no_tf(self):
        """check tf_idf calculation no tf"""
        clean_texts = []
        tf_instance = TfIdfCalculator(clean_texts)
        tf_instance.tf_values = []
        tf_instance.idf_values = {
            'this': math.log(3 / 2),
            'is': math.log(3 / 3),
            'an': math.log(3 / 1),
            'example': math.log(3 / 1),
            'of': math.log(3 / 1),
            'test': math.log(3 / 2),
            'text': math.log(3 / 2),
            'contains': math.log(3 / 1),
            'two': math.log(3 / 1),
            'sentences': math.log(3 / 1),
            'written': math.log(3 / 1),
            'on': math.log(3 / 1),
            'english': math.log(3 / 1),
            'simple': math.log(3 / 1),
            'third': math.log(3 / 1),
            'one': math.log(3 / 1),
            'there': math.log(3 / 1),
            'no': math.log(3 / 1),
            'much': math.log(3 / 1),
            'sense': math.log(3 / 1),
        }
        expected_res = []

        tf_instance.calculate()
        self.assertCountEqual(tf_instance.tf_idf_values, expected_res)
    def test_check_calculate_tf_idf_none_tf(self):
        """check tf_idf calculation none tf_none"""
        clean_texts = []
        tf_instance = TfIdfCalculator(clean_texts)
        tf_instance.tf_values = None
        expected_res = []

        tf_instance.calculate()
        self.assertCountEqual(tf_instance.tf_idf_values, expected_res)
    def test_check_calculate_tf_idf_no_idf(self):
        """check tf_idf calculation no idf"""
        clean_texts = []
        tf_instance = TfIdfCalculator(clean_texts)
        tf_instance.tf_values = [{
            'this': 1 / 11,
            'is': 1 / 11,
            'an': 1 / 11,
            'example': 1 / 11,
            'of': 1 / 11,
            'test': 1 / 11,
            'text': 2 / 11,
            'contains': 1 / 11,
            'two': 1 / 11,
            'sentences': 1 / 11
        }, {
            'this': 1 / 12,
            'is': 3 / 12,
            'test': 1 / 12,
            'text': 3 / 12,
            'written': 1 / 12,
            'on': 1 / 12,
            'english': 1 / 12,
            'simple': 1 / 12
        }, {
            'there': 1 / 5,
            'is': 1 / 5,
            'no': 1 / 5,
            'much': 1 / 5,
            'sense': 1 / 5
        }]
        tf_instance.idf_values = {}
        expected_res = []

        tf_instance.calculate()
        self.assertCountEqual(tf_instance.tf_idf_values, expected_res)
    def test_check_calculate_tf_idf_ideal(self):
        """check tf_idf calculation ideal case"""
        clean_texts = []
        tf_instance = TfIdfCalculator(clean_texts)
        tf_instance.tf_values = [{
            'this': 1 / 11,
            'is': 1 / 11,
            'an': 1 / 11,
            'example': 1 / 11,
            'of': 1 / 11,
            'test': 1 / 11,
            'text': 2 / 11,
            'contains': 1 / 11,
            'two': 1 / 11,
            'sentences': 1 / 11
        }, {
            'this': 1 / 12,
            'is': 3 / 12,
            'test': 1 / 12,
            'text': 3 / 12,
            'written': 1 / 12,
            'on': 1 / 12,
            'english': 1 / 12,
            'simple': 1 / 12
        }, {
            'there': 1 / 5,
            'is': 1 / 5,
            'no': 1 / 5,
            'much': 1 / 5,
            'sense': 1 / 5
        }]
        tf_instance.idf_values = {
            'this': math.log(3 / 2),
            'is': math.log(3 / 3),
            'an': math.log(3 / 1),
            'example': math.log(3 / 1),
            'of': math.log(3 / 1),
            'test': math.log(3 / 2),
            'text': math.log(3 / 2),
            'contains': math.log(3 / 1),
            'two': math.log(3 / 1),
            'sentences': math.log(3 / 1),
            'written': math.log(3 / 1),
            'on': math.log(3 / 1),
            'english': math.log(3 / 1),
            'simple': math.log(3 / 1),
            'third': math.log(3 / 1),
            'one': math.log(3 / 1),
            'there': math.log(3 / 1),
            'no': math.log(3 / 1),
            'much': math.log(3 / 1),
            'sense': math.log(3 / 1),
        }
        expected_res = [{
            'this': (1 / 11) * math.log(3 / 2),
            'is': (1 / 11) * math.log(3 / 3),
            'an': (1 / 11) * math.log(3 / 1),
            'example': (1 / 11) * math.log(3 / 1),
            'of': (1 / 11) * math.log(3 / 1),
            'test': (1 / 11) * math.log(3 / 2),
            'text': (2 / 11) * math.log(3 / 2),
            'contains': (1 / 11) * math.log(3 / 1),
            'two': (1 / 11) * math.log(3 / 1),
            'sentences': (1 / 11) * math.log(3 / 1)
        }, {
            'this': 1 / 12 * math.log(3 / 2),
            'is': 3 / 12 * math.log(3 / 3),
            'test': 1 / 12 * math.log(3 / 2),
            'text': 3 / 12 * math.log(3 / 2),
            'written': 1 / 12 * math.log(3 / 1),
            'on': 1 / 12 * math.log(3 / 1),
            'english': 1 / 12 * math.log(3 / 1),
            'simple': 1 / 12 * math.log(3 / 1)
        }, {
            'there': 1 / 5 * math.log(3 / 1),
            'is': 1 / 5 * math.log(3 / 3),
            'no': 1 / 5 * math.log(3 / 1),
            'much': 1 / 5 * math.log(3 / 1),
            'sense': 1 / 5 * math.log(3 / 1)
        }]

        tf_instance.calculate()
        self.assertCountEqual(tf_instance.tf_idf_values, expected_res)