Exemple #1
0
#import dataset as ds
#import learning_dataset
from labeling.exps import results_dirs as rd
from PIL import Image, ImageFont, ImageDraw
import glob
"""
Makes plots self
"""


def gray2rgb(im):
    return (color.gray2rgb(im) * 255).astype(np.uint8)


file_out = os.path.join(rd.root_dir, 'plots_results')
placehold = utls.imread(os.path.join(file_out, 'placeholder.png'))

n_sets_per_type = 2

dfs = []
# Self-learning

ims = []
ksp = []
vilar = []
g2s = []
mic17 = []
wtp = []

#for key in rd.res_dirs_dict_ksp.keys(): # Types
for key in rd.types:  # Types
Exemple #2
0
        # Make images/gts/gaze-point
        confs = rd.confs_dict_ksp[key][dset]
        conf = confs[0]

        dataset = ld.LearningDataset(conf)
        gt = dataset.gt

        ksp_mat = np.load(
            os.path.join(rd.root_dir, rd.res_dirs_dict_ksp[key][dset][gset],
                         'results.npz'))['ksp_scores_mat']

        for f in range(len(conf.frameFileNames)):
            cont_gt = segmentation.find_boundaries(gt[..., f], mode='thick')
            idx_cont_gt = np.where(cont_gt)
            im = utls.imread(conf.frameFileNames[f])
            im[idx_cont_gt[0], idx_cont_gt[1], :] = (255, 0, 0)

            myGaze_fg = utls.readCsv(
                os.path.join(conf.root_path, conf.ds_dir, conf.locs_dir,
                             conf.csvFileName_fg))
            im = csv.draw2DPoint(myGaze_fg, f, im, radius=7)

            ksp_ = (cmap(ksp_mat[..., f] * 255)[..., 0:3] * 255).astype(
                np.uint8)
            im = np.concatenate((im, ksp_), axis=0)

            ims.append(im)

        # Save frames
        if (not os.path.exists(path_out)):
    for dir_ in rd.res_dirs_dict_mic17[key]:

        print('Scoring:')
        print(dir_)
        path_ = os.path.join(rd.root_dir, dir_)

        # Get config
        conf = cfg.load_and_convert(os.path.join(path_, 'cfg.yml'))

        conf.root_path = rd.root_dir
        conf.dataOutDir = os.path.join(rd.root_dir, conf.dataOutDir)
        l_dataset = learning_dataset.LearningDataset(conf, pos_thr=0.5)
        gt = l_dataset.gt

        res_files = sorted(glob.glob(os.path.join(path_, '*.png')))
        preds = np.asarray([utls.imread(f) for f in res_files])
        preds = np.mean(preds, axis=3)
        preds = preds.transpose((1, 2, 0))

        pr, rc, _ = precision_recall_curve(gt.ravel(), preds.ravel())
        all_f1s = 2 * (pr * rc) / (pr + rc)
        max_f1 = np.nanmax(all_f1s)
        max_pr = pr[np.argmax(all_f1s)]
        max_rc = rc[np.argmax(all_f1s)]
        file_out = os.path.join(path_, 'scores.csv')

        C = pd.Index(["F1", "PR", "RC"], name="columns")
        I = pd.Index(['EEL'], name="Methods")
        data = np.asarray([max_f1, max_pr, max_rc]).reshape(1, 3)
        df = pd.DataFrame(data=data, index=I, columns=C)
        print('Saving F1 score')
Exemple #4
0
res = np.load(os.path.join(rd.root_dir, dir_, 'results.npz'))
list_paths_back = res['list_paths_back']
list_paths_forw = res['list_paths_for']

color_sps = (0, 0, 255)

ims = []
ksp = []

# Load config
dataset = learning_dataset.LearningDataset(conf)
gt = dataset.gt

# Image
ims = [utls.imread(f) for f in conf.frameFileNames]
cont_gts = [segmentation.find_boundaries(gt[..., i])
            for i in range(gt.shape[-1])]
idx_cont_gts = [np.where(g) for g in cont_gts]
path_csv = os.path.join(conf.root_path,
                        conf.ds_dir,
                        conf.locs_dir,
                        conf.csvFileName_fg)

labels = dataset.get_labels()
dataset.load_labels_contours_if_not_exist()
label_conts = dataset.labelContourMask
locs = utls.readCsv(path_csv)

for i in range(len(ims)):
        ims[i][idx_cont_gts[i][0], idx_cont_gts[i][1], :] = (255, 0, 0)
Exemple #5
0
        ksp = np.load(file_ksp)['ksp_scores_mat']
        ksp = [
            cmap((ksp[..., i] * 255).astype(np.uint8))[..., 0:3]
            for i in range(ksp.shape[-1])
        ]

        with progressbar.ProgressBar(maxval=len(conf.frameFileNames)) as bar:
            for f, i in zip(conf.frameFileNames,
                            range(len(conf.frameFileNames))):
                bar.update(i)

                # Image
                cont_gt = segmentation.find_boundaries(gt[..., i],
                                                       mode='thick')
                idx_cont_gt = np.where(cont_gt)
                im = utls.imread(f)
                im[idx_cont_gt[0], idx_cont_gt[1], :] = (255, 0, 0)
                locs2d = csv.readCsv(
                    os.path.join(conf.root_path, conf.ds_dir, conf.locs_dir,
                                 conf.csvFileName_fg))
                im = csv.draw2DPoint(locs2d, i, im, radius=7)
                im = im / 255

                im = np.concatenate((im, ksp[i].copy()), axis=1)
                im = (im * 255).astype(np.uint8)

                io.imsave(
                    os.path.join(dir_out, 'frame_{:04d}.png'.format(i + 1)),
                    im)